BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33690453)

  • 1. Development of monolayer AuNPs decorated on an optical fiber facet for SERS analysis.
    Gu C; Zhao Z; Shi P
    Appl Opt; 2021 Jan; 60(3):792-798. PubMed ID: 33690453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Enhanced Raman Spectroscopy (SERS) Activity of Gold Nanoparticles Prepared Using an Automated Loop Flow Reactor.
    Ma H; Zhang S; Yuan G; Liu Y; Cao X; Kong X; Wang Y
    Appl Spectrosc; 2023 Oct; 77(10):1163-1172. PubMed ID: 37654053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method.
    Zhou F; Liu Y; Wang H; Wei Y; Zhang G; Ye H; Chen M; Ling D
    Opt Express; 2020 Mar; 28(5):6648-6662. PubMed ID: 32225908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An approach for fabricating self-assembled monolayer of gold nanoparticles on NH2(+) ion implantation modified indium tin oxide as the SERS-active substrate.
    Li S; Liu L; Hu J
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():533-7. PubMed ID: 22137745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes.
    Cao J; Zhao D; Qin Y
    Talanta; 2019 Mar; 194():895-902. PubMed ID: 30609621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Hydrophobic CFP@PDA@AuNPs Stripes for Highly Sensitive SERS Detection of Methylene Blue Residue.
    Dong J; Wang T; Xu E; Bai F; Liu J; Zhang Z
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram.
    Wang B; Zhang L; Zhou X
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():63-9. PubMed ID: 24220671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creating SERS hot spots on MoS(2) nanosheets with in situ grown gold nanoparticles.
    Su S; Zhang C; Yuwen L; Chao J; Zuo X; Liu X; Song C; Fan C; Wang L
    ACS Appl Mater Interfaces; 2014; 6(21):18735-41. PubMed ID: 25310705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of paper-based SERS substrates by spraying silver and gold nanoparticles for SERS determination of malachite green, methylene blue, and crystal violet in fish.
    Yang G; Fang X; Jia Q; Gu H; Li Y; Han C; Qu LL
    Mikrochim Acta; 2020 May; 187(5):310. PubMed ID: 32367314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confined Gaussian-distributed electromagnetic field of tin(II) chloride-sensitized surface-enhanced Raman scattering (SERS) optical fiber probe: From localized surface plasmon resonance (LSPR) to waveguide propagation.
    Long Y; Li H; Du Z; Geng M; Liu Z
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):698-708. PubMed ID: 32814193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles-decorated electrospun poly(N-vinyl-2-pyrrolidone) nanofibers with tunable size and coverage density for nanomolar detection of single and binary component dyes by surface-enhanced raman spectroscopy.
    Kurniawan A; Wang MJ
    Nanotechnology; 2017 Sep; 28(35):355703. PubMed ID: 28649960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection.
    Hu Y; Liao J; Wang D; Li G
    Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles.
    Zhang X; Zhang J; Quan J; Wang N; Zhu Y
    Analyst; 2016 Oct; 141(19):5527-34. PubMed ID: 27396689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence
studies on live endothelial cells.
    Jaworska A; Wojcik T; Malek K; Kwolek U; Kepczynski M; Ansary AA; Chlopicki S; Baranska M
    Mikrochim Acta; 2015; 182(1):119-127. PubMed ID: 25568498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene oxide and gold nanoparticle based dual platform with short DNA probe for the PCR free DNA biosensing using surface-enhanced Raman scattering.
    Khalil I; Yehye WA; Julkapli NM; Rahmati S; Sina AA; Basirun WJ; Johan MR
    Biosens Bioelectron; 2019 Apr; 131():214-223. PubMed ID: 30844598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optical Analysis of the Interaction of Mercaptan Derivatives of Nanogold Particles with Carcinoembryonic Antigen].
    Zeng HJ; Zhao RL; Wang DS; Li CX; Liu YY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Feb; 36(2):478-81. PubMed ID: 27209753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates.
    Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH
    Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate.
    Shu L; Zhou J; Yuan X; Petti L; Chen J; Jia Z; Mormile P
    Talanta; 2014 Jun; 123():161-8. PubMed ID: 24725879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate.
    Ngo YH; Li D; Simon GP; Garnier G
    Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-Assisted Synthesis of Surfactant-Free and D-Fructose-Coated Gold Nanoparticles for Multiple Applications.
    Yasin HM; Ahmed W; Rehman NU; Majd A; Alkhedher M; Tag El Din EM
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.