These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33690748)

  • 1. Supported bilayer membranes for reducing cell adhesion in microfluidic devices.
    Clapis JR; Fan MJ; Kovarik ML
    Anal Methods; 2021 Mar; 13(12):1535-1540. PubMed ID: 33690748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-Bicelle-Coated Microfluidics for Intracellular Delivery with Reduced Fouling.
    Belling JN; Heidenreich LK; Park JH; Kawakami LM; Takahashi J; Frost IM; Gong Y; Young TD; Jackman JA; Jonas SJ; Cho NJ; Weiss PS
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):45744-45752. PubMed ID: 32940030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL; McDonald A; Gourley PL; Sasaki DY
    J Biomed Mater Res A; 2005 Jan; 72(1):10-8. PubMed ID: 15534867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodynamics of lipid membrane interactions in the presence of zwitterionic buffers.
    Koerner MM; Palacio LA; Wright JW; Schweitzer KS; Ray BD; Petrache HI
    Biophys J; 2011 Jul; 101(2):362-9. PubMed ID: 21767488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coating for preventing nonspecific adhesion mediated biofouling in salty systems: Effect of the electrostatic and van der waals interactions.
    Etha SA; Sivasankar VS; Sachar HS; Das S
    Electrophoresis; 2020 May; 41(9):657-665. PubMed ID: 32092163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of supported bilayers on silica substrates.
    Anderson TH; Min Y; Weirich KL; Zeng H; Fygenson D; Israelachvili JN
    Langmuir; 2009 Jun; 25(12):6997-7005. PubMed ID: 19354208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelialization of PDMS-based microfluidic devices under high shear stress conditions.
    Siddique A; Pause I; Narayan S; Kruse L; Stark RW
    Colloids Surf B Biointerfaces; 2021 Jan; 197():111394. PubMed ID: 33075662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated microfluidic biosensing platform for simultaneous confocal microscopy and electrophysiological measurements on bilayer lipid membranes and ion channels.
    Schulze Greiving VC; de Boer HL; Bomer JG; van den Berg A; Le Gac S
    Electrophoresis; 2018 Feb; 39(3):496-503. PubMed ID: 29193178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers.
    Plegue TJ; Kovach KM; Thompson AJ; Potkay JA
    Langmuir; 2018 Jan; 34(1):492-502. PubMed ID: 29231737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion between cerebroside bilayers.
    Kulkarni K; Snyder DS; McIntosh TJ
    Biochemistry; 1999 Nov; 38(46):15264-71. PubMed ID: 10563811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; VĂ¡cha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using microcantilevers to study the interactions of lipid bilayers with solid surfaces.
    Liu KW; Biswal SL
    Anal Chem; 2010 Sep; 82(18):7527-32. PubMed ID: 20726504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of lipid charge in organization of water/lipid bilayer interface: insights via computer simulations.
    Polyansky AA; Volynsky PE; Nolde DE; Arseniev AS; Efremov RG
    J Phys Chem B; 2005 Aug; 109(31):15052-9. PubMed ID: 16852905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy potential for aggregation of giant, neutral lipid bilayer vesicles by Van der Waals attraction.
    Evans E; Metcalfe M
    Biophys J; 1984 Sep; 46(3):423-6. PubMed ID: 6487740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved cell adhesion under shear stress in PDMS microfluidic devices.
    Siddique A; Meckel T; Stark RW; Narayan S
    Colloids Surf B Biointerfaces; 2017 Feb; 150():456-464. PubMed ID: 27847226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method to determine the surface charge in microfluidic channels.
    Mampallil D; van den Ende D; Mugele F
    Electrophoresis; 2010 Jan; 31(3):563-9. PubMed ID: 20119966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic effects on deposition of multiple phospholipid bilayers at oxide surfaces.
    Oleson TA; Sahai N; Pedersen JA
    J Colloid Interface Sci; 2010 Dec; 352(2):327-36. PubMed ID: 20869065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interaction of polyphenols with bilayers: conditions for increasing bilayer adhesion.
    Huh NW; Porter NA; McIntosh TJ; Simon SA
    Biophys J; 1996 Dec; 71(6):3261-77. PubMed ID: 8968596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.
    Jackman JA; Tabaei SR; Zhao Z; Yorulmaz S; Cho NJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):959-68. PubMed ID: 25513828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable and fluid ethylphosphocholine membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters.
    Phillips KS; Dong Y; Carter D; Cheng Q
    Anal Chem; 2005 May; 77(9):2960-5. PubMed ID: 15859616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.