These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 33690995)
41. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients. Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936 [TBL] [Abstract][Full Text] [Related]
42. Bioinspired Ultrastable MXene/PEDOT:PSS Layered Membrane for Effective Salinity Gradient Energy Harvesting from Organic Solvents. Chen Y; Fang M; Ding S; Liu Y; Wang X; Guo Y; Sun X; Zhu Y ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35543622 [TBL] [Abstract][Full Text] [Related]
43. Compressible Ionized Natural 3D Interconnected Loofah Membrane for Salinity Gradient Power Generation. Luan P; Zhao Y; Li Q; Cao D; Wang Y; Sun X; Liu C; Zhu H Small; 2022 Jan; 18(2):e2104320. PubMed ID: 34747120 [TBL] [Abstract][Full Text] [Related]
44. Super-assembled mesoporous thin films with asymmetric nanofluidic channels for sensitive and reversible electrical sensing. Zeng H; Zhou S; Xie L; Liang Q; Zhang X; Yan M; Huang Y; Liu T; Chen P; Zhang L; Liang K; Jiang L; Kong B Biosens Bioelectron; 2023 Feb; 222():114985. PubMed ID: 36493724 [TBL] [Abstract][Full Text] [Related]
45. Photo-controllable Ion-Gated Metal-Organic Framework MIL-53 Sub-nanochannels for Efficient Osmotic Energy Generation. Liu Y; Chen Y; Guo Y; Wang X; Ding S; Sun X; Wang H; Zhu Y; Jiang L ACS Nano; 2022 Oct; 16(10):16343-16352. PubMed ID: 36226827 [TBL] [Abstract][Full Text] [Related]
46. Porous Ti Hong S; El-Demellawi JK; Lei Y; Liu Z; Marzooqi FA; Arafat HA; Alshareef HN ACS Nano; 2022 Jan; 16(1):792-800. PubMed ID: 35000386 [TBL] [Abstract][Full Text] [Related]
47. Light-Driven Active Proton Transport through Photoacid- and Photobase-Doped Janus Graphene Oxide Membranes. Wang L; Wen Q; Jia P; Jia M; Lu D; Sun X; Jiang L; Guo W Adv Mater; 2019 Sep; 31(36):e1903029. PubMed ID: 31339197 [TBL] [Abstract][Full Text] [Related]
48. Neutralization Reaction Assisted Chemical-Potential-Driven Ion Transport through Layered Titanium Carbides Membrane for Energy Harvesting. Liu P; Sun Y; Zhu C; Niu B; Huang X; Kong XY; Jiang L; Wen L Nano Lett; 2020 May; 20(5):3593-3601. PubMed ID: 32242672 [TBL] [Abstract][Full Text] [Related]
49. Stable Ti Yang G; Liu D; Chen C; Qian Y; Su Y; Qin S; Zhang L; Wang X; Sun L; Lei W ACS Nano; 2021 Apr; 15(4):6594-6603. PubMed ID: 33787220 [TBL] [Abstract][Full Text] [Related]
50. Advanced integrated nanochannel membrane with oppositely-charged bacterial cellulose and functionalized polymer for efficient salinity gradient energy generation. Li Z; Mehraj A; Sun Z; Fu W; Wang S Int J Biol Macromol; 2024 Oct; 277(Pt 1):133975. PubMed ID: 39029819 [TBL] [Abstract][Full Text] [Related]
51. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
52. MXene Composite Membranes with Enhanced Ion Transport and Regulated Ion Selectivity. Tong X; Liu S; Zhao Y; Huang L; Crittenden J; Chen Y Environ Sci Technol; 2022 Jun; 56(12):8964-8974. PubMed ID: 35647940 [TBL] [Abstract][Full Text] [Related]
53. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. Nekoubin N; Sadeghi A; Chakraborty S Langmuir; 2024 May; 40(19):10171-10183. PubMed ID: 38698764 [TBL] [Abstract][Full Text] [Related]
54. 2D Ordered Mesoporous Lamellar Hetero-Nanochannels with Asymmetric Wettability for Controllable Ion Transport. He Y; Huang Z; Xie L; Zhang X; Hu X; Liang K; Jiang L; Zhou S; Kong B Small; 2024 Mar; 20(11):e2306910. PubMed ID: 37926698 [TBL] [Abstract][Full Text] [Related]
55. Miniaturized Salinity Gradient Energy Harvesting Devices. Hsu WS; Preet A; Lin TY; Lin TE Molecules; 2021 Sep; 26(18):. PubMed ID: 34576940 [TBL] [Abstract][Full Text] [Related]
56. Electrodeposited MOFs Membrane with In Situ Incorporation of Charged Molecules for Osmotic Energy Harvesting. Yao B; Hussain S; Ye Z; Peng X Small; 2023 May; 19(18):e2207559. PubMed ID: 36725315 [TBL] [Abstract][Full Text] [Related]
57. Mussel-inspired fabrication of porous anodic alumina nanochannels and a graphene oxide interfacial ionic rectification device. Li C; Zhao Y; He L; Mo R; Gao H; Zhou C; Hong P; Sun S; Zhang G Chem Commun (Camb); 2018 Mar; 54(25):3122-3125. PubMed ID: 29521396 [TBL] [Abstract][Full Text] [Related]
58. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients. Yip NY; Vermaas DA; Nijmeijer K; Elimelech M Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542 [TBL] [Abstract][Full Text] [Related]
59. Super-assembly of freestanding graphene oxide-aramid fiber membrane with T-mode subnanochannels for sensitive ion transport. Zhou S; Xie L; Yan M; Zeng H; Zhang X; Zeng J; Liang Q; Liu T; Chen P; Jiang L; Kong B Analyst; 2022 Feb; 147(4):652-660. PubMed ID: 35060575 [TBL] [Abstract][Full Text] [Related]
60. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting. Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]