BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33691010)

  • 1. TreeFix-TP: Phylogenetic Error-Correction for Infectious Disease Transmission Network Inference.
    Sledzieski S; Zhang C; Mandoiu I; Bansal MS
    Pac Symp Biocomput; 2021; 26():119-130. PubMed ID: 33691010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TreeFix: statistically informed gene tree error correction using species trees.
    Wu YC; Rasmussen MD; Bansal MS; Kellis M
    Syst Biol; 2013 Jan; 62(1):110-20. PubMed ID: 22949484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved gene tree error correction in the presence of horizontal gene transfer.
    Bansal MS; Wu YC; Alm EJ; Kellis M
    Bioinformatics; 2015 Apr; 31(8):1211-8. PubMed ID: 25481006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TNet: Transmission Network Inference Using Within-Host Strain Diversity and its Application to Geographical Tracking of COVID-19 Spread.
    Dhar S; Zhang C; Mandoiu II; Bansal MS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):230-242. PubMed ID: 34255632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correcting for sequencing error in maximum likelihood phylogeny inference.
    Kuhner MK; McGill J
    G3 (Bethesda); 2014 Nov; 4(12):2545-52. PubMed ID: 25378476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set.
    Hall M; Woolhouse M; Rambaut A
    PLoS Comput Biol; 2015 Dec; 11(12):e1004613. PubMed ID: 26717515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation.
    Hejase HA; Liu KJ
    BMC Bioinformatics; 2016 Oct; 17(1):422. PubMed ID: 27737628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic Infectious Disease Epidemiology in Partially Sampled and Ongoing Outbreaks.
    Didelot X; Fraser C; Gardy J; Colijn C
    Mol Biol Evol; 2017 Apr; 34(4):997-1007. PubMed ID: 28100788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstructing foot-and-mouth disease outbreaks: a methods comparison of transmission network models.
    Firestone SM; Hayama Y; Bradhurst R; Yamamoto T; Tsutsui T; Stevenson MA
    Sci Rep; 2019 Mar; 9(1):4809. PubMed ID: 30886211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of species phylogenies from bi-allelic markers using pseudo-likelihood.
    Zhu J; Nakhleh L
    Bioinformatics; 2018 Jul; 34(13):i376-i385. PubMed ID: 29950004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOPHIE: Viral outbreak investigation and transmission history reconstruction in a joint phylogenetic and network theory framework.
    Skums P; Mohebbi F; Tsyvina V; Baykal PI; Nemira A; Ramachandran S; Khudyakov Y
    Cell Syst; 2022 Oct; 13(10):844-856.e4. PubMed ID: 36265470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bayesian reconstruction of transmission within outbreaks using genomic variants.
    De Maio N; Worby CJ; Wilson DJ; Stoesser N
    PLoS Comput Biol; 2018 Apr; 14(4):e1006117. PubMed ID: 29668677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A divide-and-conquer method for scalable phylogenetic network inference from multilocus data.
    Zhu J; Liu X; Ogilvie HA; Nakhleh LK
    Bioinformatics; 2019 Jul; 35(14):i370-i378. PubMed ID: 31510688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QUENTIN: reconstruction of disease transmissions from viral quasispecies genomic data.
    Skums P; Zelikovsky A; Singh R; Gussler W; Dimitrova Z; Knyazev S; Mandric I; Ramachandran S; Campo D; Jha D; Bunimovich L; Costenbader E; Sexton C; O'Connor S; Xia GL; Khudyakov Y
    Bioinformatics; 2018 Jan; 34(1):163-170. PubMed ID: 29304222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian inference of phylogenetic networks from bi-allelic genetic markers.
    Zhu J; Wen D; Yu Y; Meudt HM; Nakhleh L
    PLoS Comput Biol; 2018 Jan; 14(1):e1005932. PubMed ID: 29320496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RENT+: an improved method for inferring local genealogical trees from haplotypes with recombination.
    Mirzaei S; Wu Y
    Bioinformatics; 2017 Apr; 33(7):1021-1030. PubMed ID: 28065901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inference of Transmission Network Structure from HIV Phylogenetic Trees.
    Giardina F; Romero-Severson EO; Albert J; Britton T; Leitner T
    PLoS Comput Biol; 2017 Jan; 13(1):e1005316. PubMed ID: 28085876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian coestimation of phylogeny and sequence alignment.
    Lunter G; Miklós I; Drummond A; Jensen JL; Hein J
    BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DaTeR: error-correcting phylogenetic chronograms using relative time constraints.
    Mondal A; Rangel LT; Payette JG; Fournier GP; Bansal MS
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36752504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary case inference in viral outbreaks through analysis of intra-host variant population.
    Gussler JW; Campo DS; Dimitrova Z; Skums P; Khudyakov Y
    BMC Bioinformatics; 2022 Feb; 23(1):62. PubMed ID: 35135469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.