BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33691115)

  • 21. Enhanced short-latency responses in the ventral posterior medial (VPM) thalamic nucleus following whisker trimming in the adult rat.
    Dolan S; Cahusac PM
    Physiol Behav; 2007 Oct; 92(3):500-6. PubMed ID: 17521687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection.
    Takeuchi Y; Yamasaki M; Nagumo Y; Imoto K; Watanabe M; Miyata M
    J Neurosci; 2012 May; 32(20):6917-30. PubMed ID: 22593060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasticity of cerebral metabolic whisker maps in adult mice after whisker follicle removal--II. Modifications in the subcortical somatosensory system.
    Melzer P; Smith CB
    Neuroscience; 1998 Mar; 83(1):43-61. PubMed ID: 9466398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response properties of whisker-associated trigeminothalamic neurons in rat nucleus principalis.
    Minnery BS; Simons DJ
    J Neurophysiol; 2003 Jan; 89(1):40-56. PubMed ID: 12522158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Receptive-field properties of rat ventral posterior medial neurons before and after selective kainic acid lesions of the trigeminal brain stem complex.
    Rhoades RW; Belford GR; Killackey HP
    J Neurophysiol; 1987 May; 57(5):1577-600. PubMed ID: 3585480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus.
    Thomas TC; Ogle SB; Rumney BM; May HG; Adelson PD; Lifshitz J
    Behav Brain Res; 2018 Mar; 340():137-146. PubMed ID: 28042008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral Consequences of a Bifacial Map in the Mouse Somatosensory Cortex.
    Tsytsarev V; Arakawa H; Zhao S; Chédotal A; Erzurumlu RS
    J Neurosci; 2017 Jul; 37(30):7209-7218. PubMed ID: 28663199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice.
    Urbain N; Salin PA; Libourel PA; Comte JC; Gentet LJ; Petersen CCH
    Cell Rep; 2015 Oct; 13(4):647-656. PubMed ID: 26489463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system.
    Ego-Stengel V; Le Cam J; Shulz DE
    J Neurosci; 2012 Mar; 32(10):3339-51. PubMed ID: 22399756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons.
    Ghazanfar AA; Krupa DJ; Nicolelis MA
    Exp Brain Res; 2001 Nov; 141(1):88-100. PubMed ID: 11685413
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortex dynamically modulates responses of thalamic relay neurons through prolonged circuit-level disinhibition in rat thalamus in vivo.
    Li L; Ebner FF
    J Neurophysiol; 2016 Nov; 116(5):2368-2382. PubMed ID: 27582292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Transformation of Adaptation Specificity to Whisker Identity from Brainstem to Thalamus.
    Jubran M; Mohar B; Lampl I
    Front Syst Neurosci; 2016; 10():56. PubMed ID: 27445716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thalamic projections from the whisker-sensitive regions of the spinal trigeminal complex in the rat.
    Veinante P; Jacquin MF; DeschĂȘnes M
    J Comp Neurol; 2000 May; 420(2):233-43. PubMed ID: 10753309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. VPM and PoM nuclei of the rat somatosensory thalamus: intrinsic neuronal properties and corticothalamic feedback.
    Landisman CE; Connors BW
    Cereb Cortex; 2007 Dec; 17(12):2853-65. PubMed ID: 17389627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hoxa2- and rhombomere-dependent development of the mouse facial somatosensory map.
    Oury F; Murakami Y; Renaud JS; Pasqualetti M; Charnay P; Ren SY; Rijli FM
    Science; 2006 Sep; 313(5792):1408-13. PubMed ID: 16902088
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Balancing bilateral sensory activity: callosal processing modulates sensory transmission through the contralateral thalamus by altering the response threshold.
    Li L; Ebner FF
    Exp Brain Res; 2006 Jul; 172(3):397-415. PubMed ID: 16429268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neonatal whisker removal reduces the discrimination of tactile stimuli by thalamic ensembles in adult rats.
    Nicolelis MA; Lin RC; Chapin JK
    J Neurophysiol; 1997 Sep; 78(3):1691-706. PubMed ID: 9310453
    [TBL] [Abstract][Full Text] [Related]  

  • 39. BDNF produced by cerebral microglia promotes cortical plasticity and pain hypersensitivity after peripheral nerve injury.
    Huang L; Jin J; Chen K; You S; Zhang H; Sideris A; Norcini M; Recio-Pinto E; Wang J; Gan WB; Yang G
    PLoS Biol; 2021 Jul; 19(7):e3001337. PubMed ID: 34292944
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immediate thalamic sensory plasticity depends on corticothalamic feedback.
    Krupa DJ; Ghazanfar AA; Nicolelis MA
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8200-5. PubMed ID: 10393972
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.