These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Diagnostic performance of texture analysis on MRI in grading cerebral gliomas. Skogen K; Schulz A; Dormagen JB; Ganeshan B; Helseth E; Server A Eur J Radiol; 2016 Apr; 85(4):824-9. PubMed ID: 26971430 [TBL] [Abstract][Full Text] [Related]
3. Predicting outcome in childhood diffuse midline gliomas using magnetic resonance imaging based texture analysis. Szychot E; Youssef A; Ganeshan B; Endozo R; Hyare H; Gains J; Mankad K; Shankar A J Neuroradiol; 2021 Jun; 48(4):243-247. PubMed ID: 32184119 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic accuracy of MRI texture analysis for grading gliomas. Ditmer A; Zhang B; Shujaat T; Pavlina A; Luibrand N; Gaskill-Shipley M; Vagal A J Neurooncol; 2018 Dec; 140(3):583-589. PubMed ID: 30145731 [TBL] [Abstract][Full Text] [Related]
5. Filtration-histogram based magnetic resonance texture analysis (MRTA) for glioma IDH and 1p19q genotyping. Lewis MA; Ganeshan B; Barnes A; Bisdas S; Jaunmuktane Z; Brandner S; Endozo R; Groves A; Thust SC Eur J Radiol; 2019 Apr; 113():116-123. PubMed ID: 30927935 [TBL] [Abstract][Full Text] [Related]
6. Optimizing Texture Retrieving Model for Multimodal MR Image-Based Support Vector Machine for Classifying Glioma. Yang Y; Yan LF; Zhang X; Nan HY; Hu YC; Han Y; Zhang J; Liu ZC; Sun YZ; Tian Q; Yu Y; Sun Q; Wang SY; Zhang X; Wang W; Cui GB J Magn Reson Imaging; 2019 May; 49(5):1263-1274. PubMed ID: 30623514 [TBL] [Abstract][Full Text] [Related]
8. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
9. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
10. Textural features of dynamic contrast-enhanced MRI derived model-free and model-based parameter maps in glioma grading. Xie T; Chen X; Fang J; Kang H; Xue W; Tong H; Cao P; Wang S; Yang Y; Zhang W J Magn Reson Imaging; 2018 Apr; 47(4):1099-1111. PubMed ID: 28845594 [TBL] [Abstract][Full Text] [Related]
11. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
13. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Li-Chun Hsieh K; Chen CY; Lo CM Comput Biol Med; 2017 Apr; 83():102-108. PubMed ID: 28254615 [TBL] [Abstract][Full Text] [Related]
14. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
15. Role of MR texture analysis in histological subtyping and grading of renal cell carcinoma: a preliminary study. Goyal A; Razik A; Kandasamy D; Seth A; Das P; Ganeshan B; Sharma R Abdom Radiol (NY); 2019 Oct; 44(10):3336-3349. PubMed ID: 31300850 [TBL] [Abstract][Full Text] [Related]
16. Texture Analysis in Cerebral Gliomas: A Review of the Literature. Soni N; Priya S; Bathla G AJNR Am J Neuroradiol; 2019 Jun; 40(6):928-934. PubMed ID: 31122918 [TBL] [Abstract][Full Text] [Related]
17. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
18. MRI based texture analysis to classify low grade gliomas into astrocytoma and 1p/19q codeleted oligodendroglioma. Zhang S; Chiang GC; Magge RS; Fine HA; Ramakrishna R; Chang EW; Pulisetty T; Wang Y; Zhu W; Kovanlikaya I Magn Reson Imaging; 2019 Apr; 57():254-258. PubMed ID: 30465868 [TBL] [Abstract][Full Text] [Related]
19. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection. Makanyanga J; Ganeshan B; Rodriguez-Justo M; Bhatnagar G; Groves A; Halligan S; Miles K; Taylor SA Eur Radiol; 2017 Feb; 27(2):589-597. PubMed ID: 27048528 [TBL] [Abstract][Full Text] [Related]
20. Radiomics risk score may be a potential imaging biomarker for predicting survival in isocitrate dehydrogenase wild-type lower-grade gliomas. Park CJ; Han K; Kim H; Ahn SS; Choi YS; Park YW; Chang JH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Dec; 30(12):6464-6474. PubMed ID: 32740813 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]