These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 33692222)
21. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D; Bagcilar O; Senli YD; Yergin M; Isler C; Kocer N; Islak C; Kizilkilic O Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [TBL] [Abstract][Full Text] [Related]
22. Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis. Skogen K; Schulz A; Helseth E; Ganeshan B; Dormagen JB; Server A Acta Radiol; 2019 Mar; 60(3):356-366. PubMed ID: 29860889 [TBL] [Abstract][Full Text] [Related]
23. Association Between Histopathology and Magnetic Resonance Imaging Texture in Grading Gliomas Based on Intraoperative Magnetic Resonance Navigated Stereotactic Biopsy. Rui W; Pang H; Xie Q; Wang Y; Duan S; Ren Y; Yao Z J Comput Assist Tomogr; 2021 Sep-Oct 01; 45(5):728-735. PubMed ID: 34347700 [TBL] [Abstract][Full Text] [Related]
24. Glioma: Application of histogram analysis of pharmacokinetic parameters from T1-weighted dynamic contrast-enhanced MR imaging to tumor grading. Jung SC; Yeom JA; Kim JH; Ryoo I; Kim SC; Shin H; Lee AL; Yun TJ; Park CK; Sohn CH; Park SH; Choi SH AJNR Am J Neuroradiol; 2014 Jun; 35(6):1103-10. PubMed ID: 24384119 [TBL] [Abstract][Full Text] [Related]
25. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. Han Y; Xie Z; Zang Y; Zhang S; Gu D; Zhou M; Gevaert O; Wei J; Li C; Chen H; Du J; Liu Z; Dong D; Tian J; Zhou D J Neurooncol; 2018 Nov; 140(2):297-306. PubMed ID: 30097822 [TBL] [Abstract][Full Text] [Related]
26. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis. Huang WY; Wen LH; Wu G; Pang PP; Ogbuji R; Zhang CC; Chen F; Zhao JN Cancer Sci; 2021 Jul; 112(7):2835-2844. PubMed ID: 33932065 [TBL] [Abstract][Full Text] [Related]
27. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study. Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592 [TBL] [Abstract][Full Text] [Related]
28. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116 [TBL] [Abstract][Full Text] [Related]
29. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI. Zhang X; Tian Q; Wang L; Liu Y; Li B; Liang Z; Gao P; Zheng K; Zhao B; Lu H J Magn Reson Imaging; 2018 Oct; 48(4):916-926. PubMed ID: 29394005 [TBL] [Abstract][Full Text] [Related]
30. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598 [TBL] [Abstract][Full Text] [Related]
31. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. Filss CP; Galldiks N; Stoffels G; Sabel M; Wittsack HJ; Turowski B; Antoch G; Zhang K; Fink GR; Coenen HH; Shah NJ; Herzog H; Langen KJ J Nucl Med; 2014 Apr; 55(4):540-5. PubMed ID: 24578243 [TBL] [Abstract][Full Text] [Related]
32. Whole-tumor histogram analysis of the cerebral blood volume map: tumor volume defined by 11C-methionine positron emission tomography image improves the diagnostic accuracy of cerebral glioma grading. Wu R; Watanabe Y; Arisawa A; Takahashi H; Tanaka H; Fujimoto Y; Watabe T; Isohashi K; Hatazawa J; Tomiyama N Jpn J Radiol; 2017 Oct; 35(10):613-621. PubMed ID: 28879406 [TBL] [Abstract][Full Text] [Related]
34. Magnetic resonance imaging texture analyses in lower-grade gliomas with a commercially available software: correlation of apparent diffusion coefficient and T2 skewness with 1p/19q codeletion. Kanazawa T; Minami Y; Takahashi H; Fujiwara H; Toda M; Jinzaki M; Yoshida K; Sasaki H Neurosurg Rev; 2020 Aug; 43(4):1211-1219. PubMed ID: 31402410 [TBL] [Abstract][Full Text] [Related]
35. [High-throughput texture analysis in the distinction of single metastatic brain tumors from high-grade gliomas]. Yin HL; Li DB; Jiang Y; Li SH; Chen Y; Lin GW Zhonghua Zhong Liu Za Zhi; 2018 Nov; 40(11):841-846. PubMed ID: 30481936 [No Abstract] [Full Text] [Related]
37. Whole-Tumor Histogram and Texture Analyses of DTI for Evaluation of Park YW; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Kang SG; Kim EH; Lee SK AJNR Am J Neuroradiol; 2018 Apr; 39(4):693-698. PubMed ID: 29519794 [TBL] [Abstract][Full Text] [Related]
38. MR textural analysis on T Rui W; Ren Y; Wang Y; Gao X; Xu X; Yao Z J Magn Reson Imaging; 2018 Jul; 48(1):74-83. PubMed ID: 29140606 [TBL] [Abstract][Full Text] [Related]
39. Association of Glioma Grading With Inflow-Based Vascular-Space-Occupancy MRI: A Preliminary Study at 3T. Li X; Liao S; Hua J; Guo L; Wang D; Xiao X; Zhou J; Liu X; Tan Y; Lu L; Xu Y; Wu Y J Magn Reson Imaging; 2019 Dec; 50(6):1817-1823. PubMed ID: 30932289 [TBL] [Abstract][Full Text] [Related]
40. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging. Hashido T; Saito S; Ishida T J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]