These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33692443)

  • 1. Optical Tweezers with Integrated Multiplane Microscopy (OpTIMuM): a new tool for 3D microrheology.
    Matheson AB; Paterson L; Wright AJ; Mendonca T; Tassieri M; Dalgarno PA
    Sci Rep; 2021 Mar; 11(1):5614. PubMed ID: 33692443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-frequency passive and active microrheology with optical tweezers.
    Kumar R; Vitali V; Wiedemann T; Meissner R; Minzioni P; Denz C
    Sci Rep; 2021 Jul; 11(1):13917. PubMed ID: 34230533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrheology with optical tweezers: measuring the relative viscosity of solutions 'at a glance'.
    Tassieri M; Del Giudice F; Robertson EJ; Jain N; Fries B; Wilson R; Glidle A; Greco F; Netti PA; Maffettone PL; Bicanic T; Cooper JM
    Sci Rep; 2015 Mar; 5():8831. PubMed ID: 25743468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully angularly resolved 3D microrheology with optical tweezers.
    Matheson AB; Mendonca T; Smith MG; Sutcliffe B; Fernandez AJ; Paterson L; Dalgarno PA; Wright AJ; Tassieri M
    Rheol Acta; 2024; 63(3):205-217. PubMed ID: 38440195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multidepth, multiparticle tracking for active microrheology using a smart camera.
    Silburn SA; Saunter CD; Girkin JM; Love GD
    Rev Sci Instrum; 2011 Mar; 82(3):033712. PubMed ID: 21456756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-point active microrheology in a viscous medium exploiting a motional resonance excited in dual-trap optical tweezers.
    Paul S; Kumar R; Banerjee A
    Phys Rev E; 2018 Apr; 97(4-1):042606. PubMed ID: 29758730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber based optical tweezers for simultaneous in situ force exertion and measurements in a 3D polyacrylamide gel compartment.
    Ti C; Thomas GM; Ren Y; Zhang R; Wen Q; Liu Y
    Biomed Opt Express; 2015 Jul; 6(7):2325-36. PubMed ID: 26203364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active multi-point microrheology of cytoskeletal networks.
    Paust T; Neckernuss T; Mertens LK; Martin I; Beil M; Walther P; Schimmel T; Marti O
    Beilstein J Nanotechnol; 2016; 7():484-91. PubMed ID: 27335739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precise control and measurement of solid-liquid interfacial temperature and viscosity using dual-beam femtosecond optical tweezers in the condensed phase.
    Mondal D; Mathur P; Goswami D
    Phys Chem Chem Phys; 2016 Oct; 18(37):25823-30. PubMed ID: 27523570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying Force and Viscoelasticity Inside Living Cells Using an Active-Passive Calibrated Optical Trap.
    Ritter CM; Mas J; Oddershede L; Berg-Sørensen K
    Methods Mol Biol; 2017; 1486():513-536. PubMed ID: 27844442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications.
    Robertson-Anderson RM
    ACS Macro Lett; 2018 Aug; 7(8):968-975. PubMed ID: 35650960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in the microrheology of complex fluids.
    Waigh TA
    Rep Prog Phys; 2016 Jul; 79(7):074601. PubMed ID: 27245584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed laser manipulation of an optically trapped bead: averaging thermal noise and measuring the pulsed force amplitude.
    Lindballe TB; Kristensen MV; Berg-Sørensen K; Keiding SR; Stapelfeldt H
    Opt Express; 2013 Jan; 21(2):1986-96. PubMed ID: 23389179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ calibration of position detection in an optical trap for active microrheology in viscous materials.
    Staunton JR; Blehm B; Devine A; Tanner K
    Opt Express; 2017 Feb; 25(3):1746-1761. PubMed ID: 29519028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact holographic optical tweezers instrument.
    Gibson GM; Bowman RW; Linnenberger A; Dienerowitz M; Phillips DB; Carberry DM; Miles MJ; Padgett MJ
    Rev Sci Instrum; 2012 Nov; 83(11):113107. PubMed ID: 23206051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal evolution of viscoelasticity of soft colloid laden air-water interface: a multiple mode microrheology study.
    Jose M; Lokesh M; Vaippully R; Satapathy DK; Roy B
    RSC Adv; 2022 Apr; 12(21):12988-12996. PubMed ID: 35497011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy.
    Dalgarno PA; Dalgarno HI; Putoud A; Lambert R; Paterson L; Logan DC; Towers DP; Warburton RJ; Greenaway AH
    Opt Express; 2010 Jan; 18(2):877-84. PubMed ID: 20173908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active-passive calibration of optical tweezers in viscoelastic media.
    Fischer M; Richardson AC; Reihani SN; Oddershede LB; Berg-Sørensen K
    Rev Sci Instrum; 2010 Jan; 81(1):015103. PubMed ID: 20113125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-Dumbbells-A Versatile Tool for Optical Tweezers.
    Lamperska W; Drobczyński S; Nawrot M; Wasylczyk P; Masajada J
    Micromachines (Basel); 2018 Jun; 9(6):. PubMed ID: 30424210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate position tracking of optically trapped live cells.
    McAlinden N; Glass DG; Millington OR; Wright AJ
    Biomed Opt Express; 2014 Apr; 5(4):1026-37. PubMed ID: 24761286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.