These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 33692482)
1. Single-cell analysis reveals the origins and intrahepatic development of liver-resident IFN-γ-producing γδ T cells. Hu Y; Fang K; Wang Y; Lu N; Sun H; Zhang C Cell Mol Immunol; 2021 Apr; 18(4):954-968. PubMed ID: 33692482 [TBL] [Abstract][Full Text] [Related]
2. Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. Shibata K; Yamada H; Nakamura R; Sun X; Itsumi M; Yoshikai Y J Immunol; 2008 Nov; 181(9):5940-7. PubMed ID: 18941182 [TBL] [Abstract][Full Text] [Related]
3. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells. Dienz O; DeVault VL; Musial SC; Mistri SK; Mei L; Baraev A; Dragon JA; Krementsov D; Veillette A; Boyson JE J Immunol; 2020 Mar; 204(6):1521-1534. PubMed ID: 32024701 [TBL] [Abstract][Full Text] [Related]
4. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells. Haas JD; González FH; Schmitz S; Chennupati V; Föhse L; Kremmer E; Förster R; Prinz I Eur J Immunol; 2009 Dec; 39(12):3488-97. PubMed ID: 19830744 [TBL] [Abstract][Full Text] [Related]
5. Most IL-4-producing gamma delta thymocytes of adult mice originate from fetal precursors. Grigoriadou K; Boucontet L; Pereira P J Immunol; 2003 Sep; 171(5):2413-20. PubMed ID: 12928388 [TBL] [Abstract][Full Text] [Related]
6. γδ T cells acquire effector fates in the thymus and differentiate into cytokine-producing effectors in a Listeria model of infection independently of CD28 costimulation. Laird RM; Wolf BJ; Princiotta MF; Hayes SM PLoS One; 2013; 8(5):e63178. PubMed ID: 23671671 [TBL] [Abstract][Full Text] [Related]
7. IFN-γ-producing and IL-17-producing γδ T cells differentiate at distinct developmental stages in murine fetal thymus. Shibata K; Yamada H; Nakamura M; Hatano S; Katsuragi Y; Kominami R; Yoshikai Y J Immunol; 2014 Mar; 192(5):2210-8. PubMed ID: 24489104 [TBL] [Abstract][Full Text] [Related]
8. Three distinct developmental pathways for adaptive and two IFN-γ-producing γδ T subsets in adult thymus. Buus TB; Ødum N; Geisler C; Lauritsen JPH Nat Commun; 2017 Dec; 8(1):1911. PubMed ID: 29203769 [TBL] [Abstract][Full Text] [Related]
9. Distinct metabolic programs established in the thymus control effector functions of γδ T cell subsets in tumor microenvironments. Lopes N; McIntyre C; Martin S; Raverdeau M; Sumaria N; Kohlgruber AC; Fiala GJ; Agudelo LZ; Dyck L; Kane H; Douglas A; Cunningham S; Prendeville H; Loftus R; Carmody C; Pierre P; Kellis M; Brenner M; Argüello RJ; Silva-Santos B; Pennington DJ; Lynch L Nat Immunol; 2021 Feb; 22(2):179-192. PubMed ID: 33462452 [TBL] [Abstract][Full Text] [Related]
10. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Narayan K; Sylvia KE; Malhotra N; Yin CC; Martens G; Vallerskog T; Kornfeld H; Xiong N; Cohen NR; Brenner MB; Berg LJ; Kang J; Nat Immunol; 2012 Apr; 13(5):511-8. PubMed ID: 22473038 [TBL] [Abstract][Full Text] [Related]
11. Differentiation and activation of γδ T Lymphocytes: Focus on CD27 and CD28 costimulatory receptors. Ribot JC; Silva-Santos B Adv Exp Med Biol; 2013; 785():95-105. PubMed ID: 23456842 [TBL] [Abstract][Full Text] [Related]
12. TCR signal strength controls thymic differentiation of discrete proinflammatory γδ T cell subsets. Muñoz-Ruiz M; Ribot JC; Grosso AR; Gonçalves-Sousa N; Pamplona A; Pennington DJ; Regueiro JR; Fernández-Malavé E; Silva-Santos B Nat Immunol; 2016 Jun; 17(6):721-727. PubMed ID: 27043412 [TBL] [Abstract][Full Text] [Related]
13. Lineage divergence at the first TCR-dependent checkpoint: preferential γδ and impaired αβ T cell development in nonobese diabetic mice. Feng N; Vegh P; Rothenberg EV; Yui MA J Immunol; 2011 Jan; 186(2):826-37. PubMed ID: 21148803 [TBL] [Abstract][Full Text] [Related]
14. Developmental origins of murine γδ T-cell subsets. Sumaria N; Martin S; Pennington DJ Immunology; 2019 Apr; 156(4):299-304. PubMed ID: 30552818 [TBL] [Abstract][Full Text] [Related]
16. CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Ribot JC; deBarros A; Pang DJ; Neves JF; Peperzak V; Roberts SJ; Girardi M; Borst J; Hayday AC; Pennington DJ; Silva-Santos B Nat Immunol; 2009 Apr; 10(4):427-36. PubMed ID: 19270712 [TBL] [Abstract][Full Text] [Related]
17. MicroRNA-181a/b-1 Is Not Required for Innate γδ NKT Effector Cell Development. Sandrock I; Ziętara N; Łyszkiewicz M; Oberdörfer L; Witzlau K; Krueger A; Prinz I PLoS One; 2015; 10(12):e0145010. PubMed ID: 26673421 [TBL] [Abstract][Full Text] [Related]
18. Thymic Determinants of γδ T Cell Differentiation. Muñoz-Ruiz M; Sumaria N; Pennington DJ; Silva-Santos B Trends Immunol; 2017 May; 38(5):336-344. PubMed ID: 28285814 [TBL] [Abstract][Full Text] [Related]
19. From thymus to periphery: Molecular basis of effector γδ-T cell differentiation. Fiala GJ; Gomes AQ; Silva-Santos B Immunol Rev; 2020 Nov; 298(1):47-60. PubMed ID: 33191519 [TBL] [Abstract][Full Text] [Related]
20. Functional development of γδ T cells. Prinz I; Silva-Santos B; Pennington DJ Eur J Immunol; 2013 Aug; 43(8):1988-94. PubMed ID: 23928962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]