These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 33692872)

  • 21. Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology.
    Gupta S; Hainsworth L; Hogg JS; Lee REC; Faeder JR
    Proc Euromicro Int Conf Parallel Distrib Netw Based Process; 2018 Mar; 2018():690-697. PubMed ID: 30175326
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo.
    Zhu Y
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.
    Karabatsos G
    Behav Res Methods; 2017 Feb; 49(1):335-362. PubMed ID: 26956682
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Research on an Optimized Evaluation Method of the Bearing Capacity of Reinforced Concrete Beam Based on the Bayesian Theory.
    Wang L; Xiao Z; Yu F; Li W; Fu N
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantifying the uncertainty in model parameters using Gaussian process-based Markov chain Monte Carlo in cardiac electrophysiology.
    Dhamala J; Arevalo HJ; Sapp J; Horácek BM; Wu KC; Trayanova NA; Wang L
    Med Image Anal; 2018 Aug; 48():43-57. PubMed ID: 29843078
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Geometric ergodicity of a hybrid sampler for Bayesian inference of phylogenetic branch lengths.
    Spade DA; Herbei R; Kubatko LS
    Math Biosci; 2015 Oct; 268():9-21. PubMed ID: 26256054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimating the granularity coefficient of a Potts-Markov random field within a Markov chain Monte Carlo algorithm.
    Pereyra M; Dobigeon N; Batatia H; Tourneret JY
    IEEE Trans Image Process; 2013 Jun; 22(6):2385-97. PubMed ID: 23475357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conjugate Gibbs sampling for Bayesian phylogenetic models.
    Lartillot N
    J Comput Biol; 2006 Dec; 13(10):1701-22. PubMed ID: 17238840
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning Deep Generative Models With Doubly Stochastic Gradient MCMC.
    Du C; Zhu J; Zhang B
    IEEE Trans Neural Netw Learn Syst; 2018 Jul; 29(7):3084-3096. PubMed ID: 28678716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Markov Chain Monte Carlo Inference of Parametric Dictionaries for Sparse Bayesian Approximations.
    Chaspari T; Tsiartas A; Tsilifis P; Narayanan S
    IEEE Trans Signal Process; 2016 Jun; 64(12):3077-3092. PubMed ID: 28649173
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identifying influential observations in Bayesian models by using Markov chain Monte Carlo.
    Jackson D; White IR; Carpenter J
    Stat Med; 2012 May; 31(11-12):1238-48. PubMed ID: 21905065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using model-based proposals for fast parameter inference on discrete state space, continuous-time Markov processes.
    Pooley CM; Bishop SC; Marion G
    J R Soc Interface; 2015 Jun; 12(107):. PubMed ID: 25994297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations.
    Farr WM; Mandel I; Stevens D
    R Soc Open Sci; 2015 Jun; 2(6):150030. PubMed ID: 26543580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-Stage Metropolis-Hastings for Tall Data.
    Payne RD; Mallick BK
    J Classif; 2018 Apr; 35(1):29-51. PubMed ID: 30287977
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Novel and Highly Effective Bayesian Sampling Algorithm Based on the Auxiliary Variables to Estimate the Testlet Effect Models.
    Lu J; Zhang J; Zhang Z; Xu B; Tao J
    Front Psychol; 2021; 12():509575. PubMed ID: 34456774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Joint analysis of recurrence and termination: A Bayesian latent class approach.
    Xu Z; Sinha D; Bradley JR
    Stat Methods Med Res; 2021 Feb; 30(2):508-522. PubMed ID: 33050774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on mapping quantitative trait loci for animal complex binary traits using Bayesian-Markov chain Monte Carlo approach.
    Liu J; Zhang Y; Zhang Q; Wang L; Zhang J
    Sci China C Life Sci; 2006 Dec; 49(6):552-9. PubMed ID: 17312993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adaptive Incremental Mixture Markov Chain Monte Carlo.
    Maire F; Friel N; Mira A; Raftery AE
    J Comput Graph Stat; 2019; 28(4):790-805. PubMed ID: 32410811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Bayesian inference to estimate plausible muscle forces in musculoskeletal models.
    Johnson RT; Lakeland D; Finley JM
    J Neuroeng Rehabil; 2022 Mar; 19(1):34. PubMed ID: 35321736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data.
    Liang F; Kim J; Song Q
    Technometrics; 2016; 58(3):604-318. PubMed ID: 29033469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.