BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 33693773)

  • 21. Highly multiplexed transcriptome imaging.
    Strack R
    Nat Methods; 2015 Jun; 12(6):486-7. PubMed ID: 26221655
    [No Abstract]   [Full Text] [Related]  

  • 22. Starfish enterprise: finding RNA patterns in single cells.
    Perkel JM
    Nature; 2019 Aug; 572(7770):549-551. PubMed ID: 31427807
    [No Abstract]   [Full Text] [Related]  

  • 23. Profiling the transcriptome with RNA SPOTs.
    Eng CL; Shah S; Thomassie J; Cai L
    Nat Methods; 2017 Dec; 14(12):1153-1155. PubMed ID: 29131163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH.
    Fang R; Xia C; Close JL; Zhang M; He J; Huang Z; Halpern AR; Long B; Miller JA; Lein ES; Zhuang X
    Science; 2022 Jul; 377(6601):56-62. PubMed ID: 35771910
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells.
    Orjalo AV; Johansson HE
    Methods Mol Biol; 2016; 1402():119-134. PubMed ID: 26721487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Omics goes spatial epigenomics.
    Schueder F; Bewersdorf J
    Cell; 2022 Nov; 185(23):4253-4255. PubMed ID: 36368304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detecting Circular RNAs by RNA Fluorescence In Situ Hybridization.
    Zirkel A; Papantonis A
    Methods Mol Biol; 2018; 1724():69-75. PubMed ID: 29322441
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Molecule Fluorescence In Situ Hybridization (FISH) of Circular RNA CDR1as.
    Kocks C; Boltengagen A; Piwecka M; Rybak-Wolf A; Rajewsky N
    Methods Mol Biol; 2018; 1724():77-96. PubMed ID: 29322442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Multiplexed Single-Cell In Situ RNA and DNA Analysis by Consecutive Hybridization.
    Xiao L; Liao R; Guo J
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33113917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improved enzymatic labeling of fluorescent in situ hybridization probes applied to the visualization of retained introns in cells.
    Xiao W; Yeom KH; Lin CH; Black DL
    RNA; 2023 Aug; 29(8):1274-1287. PubMed ID: 37130703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems.
    Alon S; Goodwin DR; Sinha A; Wassie AT; Chen F; Daugharthy ER; Bando Y; Kajita A; Xue AG; Marrett K; Prior R; Cui Y; Payne AC; Yao CC; Suk HJ; Wang R; Yu CJ; Tillberg P; Reginato P; Pak N; Liu S; Punthambaker S; Iyer EPR; Kohman RE; Miller JA; Lein ES; Lako A; Cullen N; Rodig S; Helvie K; Abravanel DL; Wagle N; Johnson BE; Klughammer J; Slyper M; Waldman J; Jané-Valbuena J; Rozenblatt-Rosen O; Regev A; ; Church GM; Marblestone AH; Boyden ES
    Science; 2021 Jan; 371(6528):. PubMed ID: 33509999
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validating transcripts with probes and imaging technology.
    Itzkovitz S; van Oudenaarden A
    Nat Methods; 2011 Apr; 8(4 Suppl):S12-9. PubMed ID: 21451512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH.
    Eng CL; Lawson M; Zhu Q; Dries R; Koulena N; Takei Y; Yun J; Cronin C; Karp C; Yuan GC; Cai L
    Nature; 2019 Apr; 568(7751):235-239. PubMed ID: 30911168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Click-encoded rolling FISH for visualizing single-cell RNA polyadenylation and structures.
    Chen F; Bai M; Cao X; Zhao Y; Xue J; Zhao Y
    Nucleic Acids Res; 2019 Dec; 47(22):e145. PubMed ID: 31584096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reliable protocols for whole-mount fluorescent in situ hybridization (FISH) in the pea aphid Acyrthosiphon pisum: a comprehensive survey and analysis.
    Chung CY; Cook CE; Lin GW; Huang TY; Chang CC
    Insect Sci; 2014 Jun; 21(3):265-77. PubMed ID: 24850784
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell segmentation-free inference of cell types from in situ transcriptomics data.
    Park J; Choi W; Tiesmeyer S; Long B; Borm LE; Garren E; Nguyen TN; Tasic B; Codeluppi S; Graf T; Schlesner M; Stegle O; Eils R; Ishaque N
    Nat Commun; 2021 Jun; 12(1):3545. PubMed ID: 34112806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis.
    Lohoff T; Ghazanfar S; Missarova A; Koulena N; Pierson N; Griffiths JA; Bardot ES; Eng CL; Tyser RCV; Argelaguet R; Guibentif C; Srinivas S; Briscoe J; Simons BD; Hadjantonakis AK; Göttgens B; Reik W; Nichols J; Cai L; Marioni JC
    Nat Biotechnol; 2022 Jan; 40(1):74-85. PubMed ID: 34489600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells.
    Cui Y; Hu D; Markillie LM; Chrisler WB; Gaffrey MJ; Ansong C; Sussel L; Orr G
    Nucleic Acids Res; 2018 Jan; 46(2):e7. PubMed ID: 29040675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA: Putting transcriptomics in its place.
    Burgess DJ
    Nat Rev Genet; 2015 Jun; 16(6):319. PubMed ID: 25948245
    [No Abstract]   [Full Text] [Related]  

  • 40. Application of an RNA amplification method for reliable single-cell transcriptome analysis.
    Suslov O; Silver DJ; Siebzehnrubl FA; Orjalo A; Ptitsyn A; Steindler DA
    Biotechniques; 2015 Sep; 59(3):137-48. PubMed ID: 26345506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.