These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 33693968)
1. Segmentation of white matter hyperintensities on Oh KT; Kim D; Ye BS; Lee S; Yun M; Yoo SK Eur J Nucl Med Mol Imaging; 2021 Oct; 48(11):3422-3431. PubMed ID: 33693968 [TBL] [Abstract][Full Text] [Related]
2. Semantic Segmentation of White Matter in FDG-PET Using Generative Adversarial Network. Oh KT; Lee S; Lee H; Yun M; Yoo SK J Digit Imaging; 2020 Aug; 33(4):816-825. PubMed ID: 32043177 [TBL] [Abstract][Full Text] [Related]
3. Automatic segmentation of white matter hyperintensities: validation and comparison with state-of-the-art methods on both Multiple Sclerosis and elderly subjects. Tran P; Thoprakarn U; Gourieux E; Dos Santos CL; Cavedo E; Guizard N; Cotton F; Krolak-Salmon P; Delmaire C; Heidelberg D; Pyatigorskaya N; Ströer S; Dormont D; Martini JB; Chupin M; Neuroimage Clin; 2022; 33():102940. PubMed ID: 35051744 [TBL] [Abstract][Full Text] [Related]
4. Performance of three freely available methods for extracting white matter hyperintensities: FreeSurfer, UBO Detector, and BIANCA. Hotz I; Deschwanden PF; Liem F; Mérillat S; Malagurski B; Kollias S; Jäncke L Hum Brain Mapp; 2022 Apr; 43(5):1481-1500. PubMed ID: 34873789 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of a deep learning approach for the segmentation of brain tissues and white matter hyperintensities of presumed vascular origin in MRI. Moeskops P; de Bresser J; Kuijf HJ; Mendrik AM; Biessels GJ; Pluim JPW; Išgum I Neuroimage Clin; 2018; 17():251-262. PubMed ID: 29159042 [TBL] [Abstract][Full Text] [Related]
6. Specialized gray matter segmentation via a generative adversarial network: application on brain white matter hyperintensities classification. Bawil MB; Shamsi M; Bavil AS; Danishvar S Front Neurosci; 2024; 18():1416174. PubMed ID: 39403067 [TBL] [Abstract][Full Text] [Related]
7. Utility of gray-matter segmentation of ictal-Interictal perfusion SPECT and interictal Elkins KC; Moncayo VM; Kim H; Olson LD Epilepsy Res; 2017 Feb; 130():93-100. PubMed ID: 28171851 [TBL] [Abstract][Full Text] [Related]
9. Segmentation of white matter hyperintensities using convolutional neural networks with global spatial information in routine clinical brain MRI with none or mild vascular pathology. Rachmadi MF; Valdés-Hernández MDC; Agan MLF; Di Perri C; Komura T; Comput Med Imaging Graph; 2018 Jun; 66():28-43. PubMed ID: 29523002 [TBL] [Abstract][Full Text] [Related]
10. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features. Rincón M; Díaz-López E; Selnes P; Vegge K; Altmann M; Fladby T; Bjørnerud A Neuroinformatics; 2017 Jul; 15(3):231-245. PubMed ID: 28378263 [TBL] [Abstract][Full Text] [Related]
11. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Ling Y; Jouvent E; Cousyn L; Chabriat H; De Guio F Neuroinformatics; 2018 Apr; 16(2):269-281. PubMed ID: 29594711 [TBL] [Abstract][Full Text] [Related]
12. White matter hyperintensities segmentation: a new semi-automated method. Iorio M; Spalletta G; Chiapponi C; Luccichenti G; Cacciari C; Orfei MD; Caltagirone C; Piras F Front Aging Neurosci; 2013; 5():76. PubMed ID: 24339815 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Semiautomatic and Deep Learning-Based Fully Automatic Segmentation Methods on [ Constantino CS; Leocádio S; Oliveira FPM; Silva M; Oliveira C; Castanheira JC; Silva Â; Vaz S; Teixeira R; Neves M; Lúcio P; João C; Costa DC J Digit Imaging; 2023 Aug; 36(4):1864-1876. PubMed ID: 37059891 [TBL] [Abstract][Full Text] [Related]
14. Automatic segmentation and quantitative analysis of white matter hyperintensities on FLAIR images using trimmed-likelihood estimator. Wang R; Li C; Wang J; Wei X; Li Y; Hui C; Zhu Y; Zhang S Acad Radiol; 2014 Dec; 21(12):1512-23. PubMed ID: 25176451 [TBL] [Abstract][Full Text] [Related]
15. Automated Segmentation of MRI White Matter Hyperintensities in 8421 Patients with Acute Ischemic Stroke. Kim H; Ryu WS; Schellingerhout D; Park J; Chung J; Jeong SW; Gwak DS; Kim BJ; Kim JT; Hong KS; Lee KB; Park TH; Park JM; Kang K; Cho YJ; Lee BC; Yu KH; Oh MS; Lee SJ; Cha JK; Kim DH; Lee J; Park MS; Bae HJ; Kim DE AJNR Am J Neuroradiol; 2024 Dec; 45(12):1885-1894. PubMed ID: 39013565 [TBL] [Abstract][Full Text] [Related]
16. Feasibility of simultaneous 18F-FDG PET/MRI for the quantitative volumetric and metabolic measurements of abdominal fat tissues using fat segmentation. Im HJ; Paeng JC; Cheon GJ; Kim EE; Lee JS; Goo JM; Kang KW; Chung JK; Lee DS Nucl Med Commun; 2016 Jun; 37(6):616-22. PubMed ID: 26836629 [TBL] [Abstract][Full Text] [Related]
18. Automatic quantification of white matter hyperintensities on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging. Igwe KC; Lao PJ; Vorburger RS; Banerjee A; Rivera A; Chesebro A; Laing K; Manly JJ; Brickman AM Magn Reson Imaging; 2022 Jan; 85():71-79. PubMed ID: 34662699 [TBL] [Abstract][Full Text] [Related]
19. Diagnostic performance of deep learning-based automatic white matter hyperintensity segmentation for classification of the Fazekas scale and differentiation of subcortical vascular dementia. Joo L; Shim WH; Suh CH; Lim SJ; Heo H; Kim WS; Hong E; Lee D; Sung J; Lim JS; Lee JH; Kim SJ PLoS One; 2022; 17(9):e0274562. PubMed ID: 36107961 [TBL] [Abstract][Full Text] [Related]
20. Brain Metabolic Network Redistribution in Patients with White Matter Hyperintensities on MRI Analyzed with an Individualized Index Derived from Ma J; Hua XY; Zheng MX; Wu JJ; Huo BB; Xing XX; Gao X; Zhang H; Xu JG Korean J Radiol; 2022 Oct; 23(10):986-997. PubMed ID: 36098344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]