These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33694320)

  • 1. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates.
    Rupprechter G
    Small; 2021 Jul; 17(27):e2004289. PubMed ID: 33694320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A near-ambient pressure flow reactor coupled with polarization-modulation infrared reflection absorption spectroscopy for operando studies of heterogeneous catalytic reactions over model catalysts.
    Chai P; Jin Y; Sun G; Ding L; Wu L; Wang H; Fu C; Wu Z; Huang W
    Rev Sci Instrum; 2022 May; 93(5):054105. PubMed ID: 35649779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operando chemistry of catalyst surfaces during catalysis.
    Dou J; Sun Z; Opalade AA; Wang N; Fu W; Tao FF
    Chem Soc Rev; 2017 Apr; 46(7):2001-2027. PubMed ID: 28358410
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Choi JIJ; Kim TS; Kim D; Lee SW; Park JY
    ACS Nano; 2020 Dec; 14(12):16392-16413. PubMed ID: 33210917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding Catalyst Surfaces during Catalysis through Near Ambient Pressure X-ray Photoelectron Spectroscopy.
    Nguyen L; Tao FF; Tang Y; Dou J; Bao XJ
    Chem Rev; 2019 Jun; 119(12):6822-6905. PubMed ID: 31181905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembles of Metastable States Govern Heterogeneous Catalysis on Dynamic Interfaces.
    Zhang Z; Zandkarimi B; Alexandrova AN
    Acc Chem Res; 2020 Feb; 53(2):447-458. PubMed ID: 31977181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasma-Enhanced Catalytic Synthesis of Ammonia over a Ni/Al
    Wang Y; Craven M; Yu X; Ding J; Bryant P; Huang J; Tu X
    ACS Catal; 2019 Dec; 9(12):10780-10793. PubMed ID: 32064144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variable Temperature and Pressure Operando MAS NMR for Catalysis Science and Related Materials.
    Jaegers NR; Mueller KT; Wang Y; Hu JZ
    Acc Chem Res; 2020 Mar; 53(3):611-619. PubMed ID: 31927984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions.
    Hejral U; Franz D; Volkov S; Francoual S; Strempfer J; Stierle A
    Phys Rev Lett; 2018 Mar; 120(12):126101. PubMed ID: 29694082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Surface Reconstruction of Single-Atom Bimetallic Alloy under
    Liu X; Ao C; Shen X; Wang L; Wang S; Cao L; Zhang W; Dong J; Bao J; Ding T; Zhang L; Yao T
    Nano Lett; 2020 Nov; 20(11):8319-8325. PubMed ID: 33090809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction.
    Divins NJ; Kordus D; Timoshenko J; Sinev I; Zegkinoglou I; Bergmann A; Chee SW; Widrinna S; Karslıoğlu O; Mistry H; Lopez Luna M; Zhong JQ; Hoffman AS; Boubnov A; Boscoboinik JA; Heggen M; Dunin-Borkowski RE; Bare SR; Cuenya BR
    Nat Commun; 2021 Mar; 12(1):1435. PubMed ID: 33664267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operando Insights into CO Oxidation on Cobalt Oxide Catalysts by NAP-XPS, FTIR, and XRD.
    Lukashuk L; Yigit N; Rameshan R; Kolar E; Teschner D; Hävecker M; Knop-Gericke A; Schlögl R; Föttinger K; Rupprechter G
    ACS Catal; 2018 Sep; 8(9):8630-8641. PubMed ID: 30221030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials.
    Dong CL; Vayssieres L
    Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis.
    Bayram E; Linehan JC; Fulton JL; Roberts JA; Szymczak NK; Smurthwaite TD; Özkar S; Balasubramanian M; Finke RG
    J Am Chem Soc; 2011 Nov; 133(46):18889-902. PubMed ID: 22035197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ and operando study of catalysts during high-temperature high-pressure catalysis in a fixed-bed plug flow reactor with x-ray absorption spectroscopy.
    Tang Y; Nguyen L; Li Y; Tao F
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37255372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operando Spectroscopy to Understand Dynamic Structural Changes of Solid Catalysts.
    Sarma BB; Grunwaldt JD
    Chimia (Aarau); 2024 May; 78(5):288-296. PubMed ID: 38822771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile Homebuilt Gas Feed and Analysis System for
    Plodinec M; Nerl HC; Farra R; Willinger MG; Stotz E; Schlögl R; Lunkenbein T
    Microsc Microanal; 2020 Apr; 26(2):220-228. PubMed ID: 32115001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.