These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 3370211)

  • 21. Oleic acid uptake into rat and rabbit jejunal brush border membrane.
    Schoeller C; Keelan M; Mulvey G; Stremmel W; Thomson AB
    Biochim Biophys Acta; 1995 May; 1236(1):51-64. PubMed ID: 7794955
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of fatty acids in the regulation of brush-border Ca2+ transport.
    Kreutter D; Lafreniere DC; Rasmussen H
    Biochim Biophys Acta; 1984 Nov; 777(2):261-6. PubMed ID: 6487628
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron uptake by rabbit intestinal brush border membrane vesicles involves movement through the outer surface, membrane interior, inner surface and aqueous interior.
    Perewusnyk G; Funk F
    J Nutr; 1997 Jun; 127(6):1092-8. PubMed ID: 9187622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fe3+ transport by brush-border membrane vesicles isolated from normal and hypoxic mouse duodenum and ileum.
    Simpson RJ; Raja KB; Peters TJ
    Biochim Biophys Acta; 1985 Mar; 814(1):8-12. PubMed ID: 3919765
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of linoleic acid uptake by rabbit small intestinal brush border membrane vesicles.
    Ling KY; Lee HY; Hollander D
    Lipids; 1989 Jan; 24(1):51-5. PubMed ID: 2747430
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct photoaffinity labelling of binding proteins for beta-lactam antibiotics in rabbit intestinal brush border membranes with [3H]benzylpenicillin.
    Kramer W; Girbig F; Leipe I; Petzoldt E
    Biochem Pharmacol; 1988 Jun; 37(12):2427-35. PubMed ID: 3390206
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intestinal absorption of beta-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine.
    Kramer W; Girbig F; Gutjahr U; Kowalewski S; Adam F; Schiebler W
    Eur J Biochem; 1992 Mar; 204(2):923-30. PubMed ID: 1541303
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary free fatty acids form alkaline phosphatase-enriched microdomains in the intestinal brush border membrane.
    Hansen GH; Rasmussen K; Niels-Christiansen LL; Danielsen EM
    Mol Membr Biol; 2011 Feb; 28(2):136-44. PubMed ID: 21166483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lanthanide-stimulated glucose and proline transport across rabbit intestinal brush-border membranes.
    Stevens BR; Kneer C
    Biochim Biophys Acta; 1988 Jul; 942(1):205-8. PubMed ID: 3382657
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro studies of intestinal drug absorption. Determination of partition and distribution coefficients with brush border membrane vesicles.
    Alcorn CJ; Simpson RJ; Leahy D; Peters TJ
    Biochem Pharmacol; 1991 Nov; 42(12):2259-64. PubMed ID: 1764112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of membrane surface potential on the uptake and the inhibition of cationic compounds in rat intestinal brush-border membrane vesicles and liposomes.
    Sugawara M; Oikawa H; Kobayashi M; Iseki K; Miyazaki K
    Biochim Biophys Acta; 1995 Mar; 1234(1):22-8. PubMed ID: 7880857
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Iron uptake by human upper small intestine microvillous membrane vesicles. Indication for a facilitated transport mechanism mediated by a membrane iron-binding protein.
    Teichmann R; Stremmel W
    J Clin Invest; 1990 Dec; 86(6):2145-53. PubMed ID: 2254464
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fe2+ uptake by intestinal brush-border membrane vesicles from normal and hypoxic mice.
    Simpson RJ; Peters TJ
    Biochim Biophys Acta; 1985 Apr; 814(2):381-8. PubMed ID: 3978107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Iron uptake from transferrin and lactoferrin by rat intestinal brush-border membrane vesicles.
    Kawakami H; Dosako S; Lönnerdal B
    Am J Physiol; 1990 Apr; 258(4 Pt 1):G535-41. PubMed ID: 2333967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitamin D and enterocyte brush border membrane calcium transport and fluidity in the rat.
    Schedl HP; Ronnenberg W; Christensen KK; Hollis BW
    Metabolism; 1994 Sep; 43(9):1093-103. PubMed ID: 8084284
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron uptake by rat duodenal microvillous membrane vesicles: evidence for a carrier mediated transport system.
    Stremmel W; Lotz G; Niederau C; Teschke R; Strohmeyer G
    Eur J Clin Invest; 1987 Apr; 17(2):136-45. PubMed ID: 3108004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studies on Fe complexes produced by yeast. IV. Mechanism of Fe transport from an Fe(II)-oligosaccharide complex across the mucosal membrane of the rat intestine.
    Tabata S; Tanaka K
    Chem Pharm Bull (Tokyo); 1989 Feb; 37(2):382-7. PubMed ID: 2743482
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro measurement and adaptive response of Fe3+ uptake by mouse intestine.
    Raja KB; Bjarnason I; Simpson RJ; Peters TJ
    Cell Biochem Funct; 1987 Jan; 5(1):69-76. PubMed ID: 3815747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide carrier-mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition.
    Yuasa H; Amidon GL; Fleisher D
    Pharm Res; 1993 Mar; 10(3):400-4. PubMed ID: 8464813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonesterified fatty acids inhibit iron-dependent lipid peroxidation.
    Balasubramanian KA; Nalini S; Cheeseman KH; Slater TF
    Biochim Biophys Acta; 1989 Jun; 1003(3):232-7. PubMed ID: 2742859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.