These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 3370216)

  • 1. Conformation heterogeneity in proteins as an origin of heterogeneous fluorescence decays, illustrated by native and denatured ribonuclease T1.
    Gryczynski I; Eftink M; Lakowicz JR
    Biochim Biophys Acta; 1988 Jun; 954(3):244-52. PubMed ID: 3370216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropy decays of single tryptophan proteins measured by GHz frequency-domain fluorometry with collisional quenching.
    Lakowicz JR; Gryczynski I; Szmacinski H; Cherek H; Joshi N
    Eur Biophys J; 1991; 19(3):125-40. PubMed ID: 1647947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of fluorescence decays in proteins using continuous lifetime distributions.
    Alcala JR; Gratton E; Prendergast FG
    Biophys J; 1987 Jun; 51(6):925-36. PubMed ID: 3607213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants.
    Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C
    Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of unfolding on the tryptophanyl fluorescence lifetime distribution in apomyoglobin.
    Bismuto E; Gratton E; Irace G
    Biochemistry; 1988 Mar; 27(6):2132-6. PubMed ID: 3378049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Similarity of fluorescence lifetime distributions for single tryptophan proteins in the random coil state.
    Swaminathan R; Krishnamoorthy G; Periasamy N
    Biophys J; 1994 Nov; 67(5):2013-23. PubMed ID: 7858139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry.
    Gryczynski I; Johnson ML; Lakowicz JR
    Biophys Chem; 1994 Sep; 52(1):1-13. PubMed ID: 7948708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unfolding of ubiquitin studied by picosecond time-resolved fluorescence of the tyrosine residue.
    Noronha M; Lima JC; Bastos M; Santos H; Maçanita AL
    Biophys J; 2004 Oct; 87(4):2609-20. PubMed ID: 15454455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational dynamics of bovine Cu, Zn superoxide dismutase revealed by time-resolved fluorescence spectroscopy of the single tyrosine residue.
    Ferreira ST; Stella L; Gratton E
    Biophys J; 1994 Apr; 66(4):1185-96. PubMed ID: 8038390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motional dynamics of a buried tryptophan reveals the presence of partially structured forms during denaturation of barstar.
    Swaminathan R; Nath U; Udgaonkar JB; Periasamy N; Krishnamoorthy G
    Biochemistry; 1996 Jul; 35(28):9150-7. PubMed ID: 8703920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for multiexponential tryptophan fluorescence intensity decay in proteins.
    Bajzer Z; Prendergast FG
    Biophys J; 1993 Dec; 65(6):2313-23. PubMed ID: 8312471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributions of fluorescence decay times for synthetic melittin in water-methanol mixtures and complexed with calmodulin, troponin C, and phospholipids.
    Lakowicz JR; Gryczynski I; Wiczk W; Johnson ML
    J Fluoresc; 1994 Jun; 4(2):169-77. PubMed ID: 24233379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-resolved fluorescence study of the single tryptophans of engineered skeletal muscle troponin C.
    She M; Dong WJ; Umeda PK; Cheung HC
    Biophys J; 1997 Aug; 73(2):1042-55. PubMed ID: 9251821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains.
    Irace G; Balestrieri C; Parlato G; Servillo L; Colonna G
    Biochemistry; 1981 Feb; 20(4):792-9. PubMed ID: 7213613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro renaturation of bovine beta-lactoglobulin A leads to a biologically active but incompletely refolded state.
    Subramaniam V; Steel DG; Gafni A
    Protein Sci; 1996 Oct; 5(10):2089-94. PubMed ID: 8897609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Picosecond time-resolved fluorescence of ribonuclease T1. A pH and substrate analogue binding study.
    Chen LX; Longworth JW; Fleming GR
    Biophys J; 1987 Jun; 51(6):865-73. PubMed ID: 3038204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of temperature on the fluorescence intensity and anisotropy decays of staphylococcal nuclease and the less stable nuclease-conA-SG28 mutant.
    Eftink MR; Gryczynski I; Wiczk W; Laczko G; Lakowicz JR
    Biochemistry; 1991 Sep; 30(37):8945-53. PubMed ID: 1892812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan conformations associated with partial unfolding in ribonuclease T1.
    Moors SL; Jonckheer A; De Maeyer M; Engelborghs Y; Ceulemans A
    Biophys J; 2009 Sep; 97(6):1778-86. PubMed ID: 19751684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.