BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 3370289)

  • 1. Adsorption of fibrinogen on to polystyrene latex coated with the non-ionic surfactant, poloxamer 338.
    O'Mullane JE; Davison CJ; Petrak K; Tomlinson E
    Biomaterials; 1988 Mar; 9(2):203-4. PubMed ID: 3370289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer.
    Bohner M; Ring TA; Rapoport N; Caldwell KD
    J Biomater Sci Polym Ed; 2002; 13(6):733-46. PubMed ID: 12182554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of temperature on the surface nature of an adsorbed layer of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymers.
    Carthew DL; Buckton G; Parsons GE; Poole S
    Pharm Res; 1996 Nov; 13(11):1730-3. PubMed ID: 8956343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steric stabilization of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro.
    Harper GR; Davies MC; Davis SS; Tadros TF; Taylor DC; Irving MP; Waters JA
    Biomaterials; 1991 Sep; 12(7):695-700. PubMed ID: 1742415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organ uptake of intravenously administered colloidal particles can be altered using a non-ionic surfactant (Poloxamer 338).
    Illum L; Davis SS
    FEBS Lett; 1984 Feb; 167(1):79-82. PubMed ID: 6698206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres.
    Norman ME; Williams P; Illum L
    Biomaterials; 1992; 13(12):841-9. PubMed ID: 1457677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic behavior and colloidal stability of polystyrene latex coated with ionic surfactants.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2006 May; 297(1):170-81. PubMed ID: 16289188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum.
    Moghimi SM; Muir IS; Illum L; Davis SS; Kolb-Bachofen V
    Biochim Biophys Acta; 1993 Nov; 1179(2):157-65. PubMed ID: 8218358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive adsorption of fibrinogen and albumin and blood platelet adhesion on surfaces modified with nanoparticles and/or PEO.
    Nonckreman CJ; Fleith S; Rouxhet PG; Dupont-Gillain CC
    Colloids Surf B Biointerfaces; 2010 Jun; 77(2):139-49. PubMed ID: 20171850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrinogen-dependent adherence of macrophages to surfaces coated with poly(ethylene oxide)/poly(propylene oxide) triblock copolymers.
    O'Connor SM; Patuto SJ; Gehrke SH; Retzinger GS
    Ann N Y Acad Sci; 1997 Dec; 831():138-44. PubMed ID: 9616708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers.
    Stolnik S; Daudali B; Arien A; Whetstone J; Heald CR; Garnett MC; Davis SS; Illum L
    Biochim Biophys Acta; 2001 Oct; 1514(2):261-79. PubMed ID: 11557026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of block copolymers on the adsorption of plasma proteins to microspheres.
    Norman ME; Williams P; Illum L
    Biomaterials; 1993 Feb; 14(3):193-202. PubMed ID: 8476992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces.
    Bergström K; Holmberg K; Safranj A; Hoffman AS; Edgell MJ; Kozlowski A; Hovanes BA; Harris JM
    J Biomed Mater Res; 1992 Jun; 26(6):779-90. PubMed ID: 1527100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The in vitro characterisation and biodistribution of some non-ionic surfactant coated liposomes in the rabbit.
    Khattab MA; Farr SJ; Taylor G; Kellaway IW
    J Drug Target; 1995; 3(1):39-49. PubMed ID: 7655819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of different amphiphilic molecules onto polystyrene latices.
    Jódar-Reyes AB; Ortega-Vinuesa JL; Martín-Rodríguez A
    J Colloid Interface Sci; 2005 Feb; 282(2):439-47. PubMed ID: 15589551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the nonionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration.
    Illum SL; Davis SS
    J Pharm Sci; 1983 Sep; 72(9):1086-9. PubMed ID: 6631702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentation volume, redispersibility and appearance of a polystyrene latex suspension in the presence of nonionic surface active agents.
    Law SL
    Proc Natl Sci Counc Repub China B; 1986 Jul; 10(3):203-6. PubMed ID: 3774916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct suppression of phagocytosis by amphipathic polymeric surfactants.
    Watrous-Peltier N; Uhl J; Steel V; Brophy L; Merisko-Liversidge E
    Pharm Res; 1992 Sep; 9(9):1177-83. PubMed ID: 1409401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifts in polystyrene particle surface charge upon adsorption of the Pluronic F108 surfactant.
    Ter Veen R; Fromell K; Caldwell KD
    J Colloid Interface Sci; 2005 Aug; 288(1):124-8. PubMed ID: 15927570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passive adsorption of human antirrabic immunoglobulin onto a polystyrene surface.
    Rosado E; Caroll H; Sánchez O; Peniche C
    J Biomater Sci Polym Ed; 2005; 16(4):435-48. PubMed ID: 15887652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.