BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33704064)

  • 1. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function.
    Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS
    Elife; 2021 Mar; 10():. PubMed ID: 33704064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the ATP / GTP selectivity of a GTPase, adenylosuccinate synthetase from Leishmania donovani.
    Mochi JA; Jani J; Tak K; Pappachan A
    Biochem Biophys Res Commun; 2024 Jun; 715():149975. PubMed ID: 38676997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP.
    Bange G; Petzold G; Wild K; Parlitz RO; Sinning I
    Proc Natl Acad Sci U S A; 2007 Aug; 104(34):13621-5. PubMed ID: 17699634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between membrane curvature sensitive factors SpoVM and SpoIVA in Bicelle condition.
    Chen J; Wang Y; Lin S; Yu Q; Qi Z; Jiang W; Zhao Q; Fu QB
    Biochem Biophys Res Commun; 2024 Jan; 694():149395. PubMed ID: 38141557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTP hydrolysis by Synechocystis IM30 does not decisively affect its membrane remodeling activity.
    Junglas B; Siebenaller C; Schlösser L; Hellmann N; Schneider D
    Sci Rep; 2020 Jun; 10(1):9793. PubMed ID: 32555292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triphosphate structure of guanylate-binding protein 1 and implications for nucleotide binding and GTPase mechanism.
    Prakash B; Renault L; Praefcke GJ; Herrmann C; Wittinghofer A
    EMBO J; 2000 Sep; 19(17):4555-64. PubMed ID: 10970849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism.
    Shalaeva DN; Cherepanov DA; Galperin MY; Golovin AV; Mulkidjanian AY
    Elife; 2018 Dec; 7():. PubMed ID: 30526846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the Significance of Mg
    Tagad A; Patwari GN
    J Phys Chem B; 2024 Feb; 128(7):1618-1626. PubMed ID: 38351706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invited review: Small GTPases and their GAPs.
    Mishra AK; Lambright DG
    Biopolymers; 2016 Aug; 105(8):431-48. PubMed ID: 26972107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium.
    Mao W; Renner LD; Cornilleau C; Li de la Sierra-Gallay I; Afensiss S; Benlamara S; Ah-Seng Y; Van Tilbeurgh H; Nessler S; Bertin A; Chastanet A; Carballido-Lopez R
    Elife; 2023 Oct; 12():. PubMed ID: 37818717
    [No Abstract]   [Full Text] [Related]  

  • 11. Cloning, purification and preliminary crystallographic analysis of the Bacillus subtilis GTPase YphC-GDP complex.
    Xu L; Muench SP; Roujeinikova A; Sedelnikova SE; Rice DW
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 May; 62(Pt 5):435-7. PubMed ID: 16682769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of an essential GTPase, YsxC, from Thermotoga maritima.
    Chan KH; Wong KB
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jun; 67(Pt 6):640-6. PubMed ID: 21636901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional characterization of mycobacterial PhoH2 and identification of potential inhibitor of its enzymatic activity.
    Shivangi ; Khan Y; Ekka MK; Meena LS
    Braz J Microbiol; 2024 Jun; 55(2):1033-1051. PubMed ID: 38386260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary degeneration of septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface.
    Hussain A; Nguyen VT; Reigan P; McMurray M
    Front Cell Dev Biol; 2023; 11():1296657. PubMed ID: 38125875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous luminescent quantitation of cellular guanosine and adenosine triphosphates (GTP and ATP) using QT-Luc
    Kopra K; Mahran R; Yli-Hollo T; Tabata S; Vuorinen E; Fujii Y; Vuorinen I; Ogawa-Iio A; Hirayama A; Soga T; Sasaki AT; Härmä H
    Anal Bioanal Chem; 2023 Nov; 415(27):6689-6700. PubMed ID: 37714971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation study on
    Upendra N; Kavya KM; Krishnaveni S
    J Biomol Struct Dyn; 2023 Nov; 41(19):9219-9231. PubMed ID: 36444972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of GTPase function by autophosphorylation.
    Johnson CW; Seo HS; Terrell EM; Yang MH; KleinJan F; Gebregiworgis T; Gasmi-Seabrook GMC; Geffken EA; Lakhani J; Song K; Bashyal P; Popow O; Paulo JA; Liu A; Mattos C; Marshall CB; Ikura M; Morrison DK; Dhe-Paganon S; Haigis KM
    Mol Cell; 2022 Mar; 82(5):950-968.e14. PubMed ID: 35202574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of protonation on the hydrolysis of triphosphate in vacuum and the implications for catalysis by nucleotide hydrolyzing enzymes.
    Kiani FA; Fischer S
    BMC Biochem; 2016 Jun; 17(1):12. PubMed ID: 27974044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional molecular evolution of a GTP sensing kinase: PI5P4Kβ.
    Takeuchi K; Senda M; Ikeda Y; Okuwaki K; Fukuzawa K; Nakagawa S; Sasaki M; Sasaki AT; Senda T
    FEBS J; 2023 Sep; 290(18):4419-4428. PubMed ID: 36856076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multidrug ABC transporter with a taste for GTP.
    Orelle C; Durmort C; Mathieu K; Duchêne B; Aros S; Fenaille F; André F; Junot C; Vernet T; Jault JM
    Sci Rep; 2018 Feb; 8(1):2309. PubMed ID: 29396536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.