These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 33704400)

  • 1. Glycoengineering Chinese hamster ovary cells: a short history.
    Donini R; Haslam SM; Kontoravdi C
    Biochem Soc Trans; 2021 Apr; 49(2):915-931. PubMed ID: 33704400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycoengineering of CHO Cells to Improve Product Quality.
    Wang Q; Yin B; Chung CY; Betenbaugh MJ
    Methods Mol Biol; 2017; 1603():25-44. PubMed ID: 28493121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycoengineering of Mammalian Expression Systems on a Cellular Level.
    Heffner KM; Wang Q; Hizal DB; Can Ö; Betenbaugh MJ
    Adv Biochem Eng Biotechnol; 2021; 175():37-69. PubMed ID: 29532110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies.
    Sha S; Agarabi C; Brorson K; Lee DY; Yoon S
    Trends Biotechnol; 2016 Oct; 34(10):835-846. PubMed ID: 27016033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Markov chain model for N-linked protein glycosylation--towards a low-parameter tool for model-driven glycoengineering.
    Spahn PN; Hansen AH; Hansen HG; Arnsdorf J; Kildegaard HF; Lewis NE
    Metab Eng; 2016 Jan; 33():52-66. PubMed ID: 26537759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered CHO cells for production of diverse, homogeneous glycoproteins.
    Yang Z; Wang S; Halim A; Schulz MA; Frodin M; Rahman SH; Vester-Christensen MB; Behrens C; Kristensen C; Vakhrushev SY; Bennett EP; Wandall HH; Clausen H
    Nat Biotechnol; 2015 Aug; 33(8):842-4. PubMed ID: 26192319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycosylation Analysis of Therapeutic Glycoproteins Produced in CHO Cells.
    Carillo S; Mittermayr S; Farrell A; Albrecht S; Bones J
    Methods Mol Biol; 2017; 1603():227-241. PubMed ID: 28493134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody glycoengineering strategies in mammalian cells.
    Wang Q; Chung CY; Chough S; Betenbaugh MJ
    Biotechnol Bioeng; 2018 Jun; 115(6):1378-1393. PubMed ID: 29457629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHOGlycoNET: Comprehensive glycosylation reaction network for CHO cells.
    Kotidis P; Donini R; Arnsdorf J; Hansen AH; Voldborg BGR; Chiang AWT; Haslam SM; Betenbaugh M; Jimenez Del Val I; Lewis NE; Krambeck F; Kontoravdi C
    Metab Eng; 2023 Mar; 76():87-96. PubMed ID: 36610518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits.
    Chen R
    Microb Cell Fact; 2015 Dec; 14():197. PubMed ID: 26655367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Producing Biologics with Defined N-Glycosylation in Plants.
    Esqueda A; Chen Q
    Methods Mol Biol; 2023; 2597():235-250. PubMed ID: 36374425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells.
    Stach CS; McCann MG; O'Brien CM; Le TS; Somia N; Chen X; Lee K; Fu HY; Daoutidis P; Zhao L; Hu WS; Smanski M
    ACS Synth Biol; 2019 Nov; 8(11):2524-2535. PubMed ID: 31596566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The interplay of protein engineering and glycoengineering to fine-tune antibody glycosylation and its impact on effector functions.
    Wang Q; Wang T; Zhang R; Yang S; McFarland KS; Chung CY; Jia H; Wang LX; Cipollo JF; Betenbaugh MJ
    Biotechnol Bioeng; 2022 Jan; 119(1):102-117. PubMed ID: 34647616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of glycosylation by stable co-expression of two sialylation-related enzymes on Chinese hamster ovary cells.
    Thi Sam N; Misaki R; Ohashi T; Fujiyama K
    J Biosci Bioeng; 2018 Jul; 126(1):102-110. PubMed ID: 29439861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An 'omics approach towards CHO cell engineering.
    Datta P; Linhardt RJ; Sharfstein ST
    Biotechnol Bioeng; 2013 May; 110(5):1255-71. PubMed ID: 23322664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N-glycan branching and sialylation.
    Yin B; Gao Y; Chung CY; Yang S; Blake E; Stuczynski MC; Tang J; Kildegaard HF; Andersen MR; Zhang H; Betenbaugh MJ
    Biotechnol Bioeng; 2015 Nov; 112(11):2343-51. PubMed ID: 26154505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N-linked high mannose glycans.
    Shi HH; Goudar CT
    Biotechnol Bioeng; 2014 Oct; 111(10):1907-19. PubMed ID: 24975601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycoengineering in CHO Cells: Advances in Systems Biology.
    Tejwani V; Andersen MR; Nam JH; Sharfstein ST
    Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.
    Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S
    Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycosylation control technologies for recombinant therapeutic proteins.
    Gupta SK; Shukla P
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10457-10468. PubMed ID: 30334089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.