These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33704439)

  • 1. The computational neurology of movement under active inference.
    Parr T; Limanowski J; Rawji V; Friston K
    Brain; 2021 Jul; 144(6):1799-1818. PubMed ID: 33704439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalised free energy and active inference.
    Parr T; Friston KJ
    Biol Cybern; 2019 Dec; 113(5-6):495-513. PubMed ID: 31562544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational mechanisms of sensorimotor control.
    Franklin DW; Wolpert DM
    Neuron; 2011 Nov; 72(3):425-42. PubMed ID: 22078503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computing movement geometry: a step in sensory-motor transformations.
    Zipser D; Torres E
    Prog Brain Res; 2007; 165():411-24. PubMed ID: 17925261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling the neural and physical dynamics in rhythmic movements.
    Hatsopoulos NG
    Neural Comput; 1996 Apr; 8(3):567-81. PubMed ID: 8868568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active inference and the anatomy of oculomotion.
    Parr T; Friston KJ
    Neuropsychologia; 2018 Mar; 111():334-343. PubMed ID: 29407941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gaussian process linking functions for mind, brain, and behavior.
    Bahg G; Evans DG; Galdo M; Turner BM
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29398-29406. PubMed ID: 33229563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The perceptual shaping of anticipatory actions.
    Maffei G; Herreros I; Sanchez-Fibla M; Friston KJ; Verschure PFMJ
    Proc Biol Sci; 2017 Dec; 284(1869):. PubMed ID: 29263282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neurocomputational model of the mismatch negativity.
    Lieder F; Stephan KE; Daunizeau J; Garrido MI; Friston KJ
    PLoS Comput Biol; 2013; 9(11):e1003288. PubMed ID: 24244118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Development of Bimanual Coordination Across Toddlerhood.
    Brakke K; Pacheco MM
    Monogr Soc Res Child Dev; 2019 Jun; 84(2):7-147. PubMed ID: 31162687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Anatomy of Inference: Generative Models and Brain Structure.
    Parr T; Friston KJ
    Front Comput Neurosci; 2018; 12():90. PubMed ID: 30483088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degeneracy and Redundancy in Active Inference.
    Sajid N; Parr T; Hope TM; Price CJ; Friston KJ
    Cereb Cortex; 2020 Oct; 30(11):5750-5766. PubMed ID: 32488244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active inference leads to Bayesian neurophysiology.
    Isomura T
    Neurosci Res; 2022 Feb; 175():38-45. PubMed ID: 34968557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-induced neural covariability as a signature of approximate Bayesian learning and inference.
    Lange RD; Haefner RM
    PLoS Comput Biol; 2022 Mar; 18(3):e1009557. PubMed ID: 35259152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictive coding under the free-energy principle.
    Friston K; Kiebel S
    Philos Trans R Soc Lond B Biol Sci; 2009 May; 364(1521):1211-21. PubMed ID: 19528002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expectancy-based rhythmic entrainment as continuous Bayesian inference.
    Cannon J
    PLoS Comput Biol; 2021 Jun; 17(6):e1009025. PubMed ID: 34106918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.