BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33704703)

  • 1. Generation of Functional Gene Knockout Melanoma Cell Lines by CRISPR-Cas9 Gene Editing.
    Hargadon KM; Bushhouse DZ; Johnson CE; Williams CJ
    Methods Mol Biol; 2021; 2265():25-46. PubMed ID: 33704703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of IL17RB Knockout Cell Lines Using CRISPR/Cas9-Based Genome Editing.
    Hu O; Provvido A; Zhu Y
    Methods Mol Biol; 2020; 2108():345-353. PubMed ID: 31939193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9.
    Beneke T; Gluenz E
    Methods Mol Biol; 2019; 1971():189-210. PubMed ID: 30980304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome Editing by CRISPR/Cas9 in Trypanosoma cruzi.
    Lander N; Chiurillo MA; Docampo R
    Methods Mol Biol; 2019; 1955():61-76. PubMed ID: 30868519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Knockout of
    Malek N; Mrówczyńska E; Michrowska A; Mazurkiewicz E; Pavlyk I; Mazur AJ
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of TP53-knockout canine cells using optimized CRIPSR/Cas9 vector system for canine cancer research.
    Eun K; Park MG; Jeong YW; Jeong YI; Hyun SH; Hwang WS; Kim SH; Kim H
    BMC Biotechnol; 2019 Jan; 19(1):1. PubMed ID: 30606176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-Directed Gene Editing for the Generation of Loss-of-Function Mutants in High-Throughput Zebrafish F
    Shankaran SS; Dahlem TJ; Bisgrove BW; Yost HJ; Tristani-Firouzi M
    Curr Protoc Mol Biol; 2017 Jul; 119():31.9.1-31.9.22. PubMed ID: 28678442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells.
    Grav LM; la Cour Karottki KJ; Lee JS; Kildegaard HF
    Methods Mol Biol; 2017; 1603():101-118. PubMed ID: 28493126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9-mediated 75.5-Mb inversion in maize.
    Schwartz C; Lenderts B; Feigenbutz L; Barone P; Llaca V; Fengler K; Svitashev S
    Nat Plants; 2020 Dec; 6(12):1427-1431. PubMed ID: 33299151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha.
    Sugano SS; Nishihama R; Shirakawa M; Takagi J; Matsuda Y; Ishida S; Shimada T; Hara-Nishimura I; Osakabe K; Kohchi T
    PLoS One; 2018; 13(10):e0205117. PubMed ID: 30379827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Technology Applied to the Study of Proteins Involved in Calcium Signaling in Trypanosoma cruzi.
    Lander N; Chiurillo MA; Docampo R
    Methods Mol Biol; 2020; 2116():177-197. PubMed ID: 32221922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of Human Pyruvate Carboxylase Knockout Cell Lines Using Retrovirus Expressing Short Hairpin RNA and CRISPR-Cas9 as Models to Study Its Metabolic Role in Cancer Research.
    Rattanapornsompong K; Ngamkham J; Chavalit T; Jitrapakdee S
    Methods Mol Biol; 2019; 1916():273-288. PubMed ID: 30535704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Streamlined procedure for gene knockouts using all-in-one adenoviral CRISPR-Cas9.
    Jin YH; Joo H; Lee K; Kim H; Didier R; Yang Y; Shin H; Lee C
    Sci Rep; 2019 Jan; 9(1):277. PubMed ID: 30670765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas9: from Genome Editing to Cancer Research.
    Chen S; Sun H; Miao K; Deng CX
    Int J Biol Sci; 2016; 12(12):1427-1436. PubMed ID: 27994508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of Acsl4 Gene Knockout Mouse Model by CRISPR/Cas9-Mediated Genome Engineering.
    Ren H; Hua Z; Meng J; Molenaar A; Bi Y; Cheng N; Zheng X
    Crit Rev Biomed Eng; 2019; 47(5):419-426. PubMed ID: 32422031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.
    Yang M; Zhang L; Stevens J; Gibson G
    Bone; 2014 Dec; 69():118-25. PubMed ID: 25260929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.