BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33704772)

  • 1. Accelerating and de-risking CMC development with transposon-derived manufacturing cell lines.
    Rajendran S; Balasubramanian S; Webster L; Lee M; Vavilala D; Kulikov N; Choi J; Tang C; Hunter M; Wang R; Kaur H; Karunakaran S; Sitaraman V; Minshull J; Boldog F
    Biotechnol Bioeng; 2021 Jun; 118(6):2301-2311. PubMed ID: 33704772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability.
    Matasci M; Baldi L; Hacker DL; Wurm FM
    Biotechnol Bioeng; 2011 Sep; 108(9):2141-50. PubMed ID: 21495018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of High Expressing Chinese Hamster Ovary Cell Pools Using the Leap-In Transposon System.
    Balasubramanian S; Peery RB; Minshull J; Lee M; White R; Kelly RM; Barnard GC
    Biotechnol J; 2018 Oct; 13(10):e1700748. PubMed ID: 29797786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic features of recombinant CHO clones arising from transposon-based and randomized integration.
    Huhn SC; Chang M; Jiang B; Tang X; Betenbaugh M; Du Z
    J Biotechnol; 2023 Aug; 373():73-81. PubMed ID: 37271453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards maximum acceleration of monoclonal antibody development: Leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool.
    Schmieder V; Fieder J; Drerup R; Gutierrez EA; Guelch C; Stolzenberger J; Stumbaum M; Mueller VS; Higel F; Bergbauer M; Bornhoefft K; Wittner M; Gronemeyer P; Braig C; Huber M; Reisenauer-Schaupp A; Mueller MM; Schuette M; Puengel S; Lindner B; Schmidt M; Schulz P; Fischer S
    J Biotechnol; 2022 Apr; 349():53-64. PubMed ID: 35341894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recombinant CHO Cell Pool Generation Using piggyBac Transposon System.
    Balasubramanian S
    Methods Mol Biol; 2018; 1850():69-78. PubMed ID: 30242681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid cGMP manufacturing of COVID-19 monoclonal antibody using stable CHO cell pools.
    Agostinetto R; Rossi M; Dawson J; Lim A; Simoneau MH; Boucher C; Valldorf B; Ross-Gillespie A; Jardine JG; Sok D; Burton DR; Hassell T; Broly H; Palinsky W; Dupraz P; Feinberg M; Dey AK
    Biotechnol Bioeng; 2022 Feb; 119(2):663-666. PubMed ID: 34796474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant CHO Cell Pool Generation Using PiggyBac Transposon System.
    Balasubramanian S
    Methods Mol Biol; 2024; 2810():137-146. PubMed ID: 38926277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of stable Chinese hamster ovary pools yielding antibody titers of up to 7.6 g/L using the piggyBac transposon system.
    Rajendra Y; Peery RB; Barnard GC
    Biotechnol Prog; 2016 Sep; 32(5):1301-1307. PubMed ID: 27254818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PiggyBac transposase and transposon derivatives for gene transfer targeting the ribosomal DNA loci of CHO cells.
    Bire S; Dusserre Y; Bigot Y; Mermod N
    J Biotechnol; 2021 Nov; 341():103-112. PubMed ID: 34560160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines.
    Balasubramanian S; Rajendra Y; Baldi L; Hacker DL; Wurm FM
    Biotechnol Bioeng; 2016 Jun; 113(6):1234-43. PubMed ID: 26616356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules.
    Dong E; Lam C; Tang D; Louie S; Yim M; Williams AJ; Sawyer W; Yip S; Carver J; AlBarakat A; Tsukuda J; Snedecor B; Misaghi S
    Biotechnol J; 2021 Apr; 16(4):e2000230. PubMed ID: 33259700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stable transgene expression in primitive human CD34+ hematopoietic stem/progenitor cells, using the Sleeping Beauty transposon system.
    Sumiyoshi T; Holt NG; Hollis RP; Ge S; Cannon PM; Crooks GM; Kohn DB
    Hum Gene Ther; 2009 Dec; 20(12):1607-26. PubMed ID: 19689196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgene Expression and Transposition Efficiency of Two-Component Sleeping Beauty Transposon Vector Systems Utilizing Plasmid or mRNA Encoding the Transposase.
    Tschorn N; van Heuvel Y; Stitz J
    Mol Biotechnol; 2023 Aug; 65(8):1327-1335. PubMed ID: 36547824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and Quantitative Evaluation of a Tissue-Specific Sleeping Beauty by EDL2-Specific Transposase Expression in Esophageal Squamous Carcinoma Cell Line KYSE-30.
    Mahmoudian RA; Fathi F; Farshchian M; Abbaszadegan MR
    Mol Biotechnol; 2023 Mar; 65(3):350-360. PubMed ID: 35474410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome dynamics of transgene amplification in Chinese hamster ovary cells.
    Vishwanathan N; Le H; Jacob NM; Tsao YS; Ng SW; Loo B; Liu Z; Kantardjieff A; Hu WS
    Biotechnol Bioeng; 2014 Mar; 111(3):518-28. PubMed ID: 24108600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Helper-Independent Sleeping Beauty transposon-transposase vectors for efficient nonviral gene delivery and persistent gene expression in vivo.
    Mikkelsen JG; Yant SR; Meuse L; Huang Z; Xu H; Kay MA
    Mol Ther; 2003 Oct; 8(4):654-65. PubMed ID: 14529839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombination technologies for enhanced transgene stability in bioengineered insects.
    Schetelig MF; Götschel F; Viktorinová I; Handler AM; Wimmer EA
    Genetica; 2011 Jan; 139(1):71-8. PubMed ID: 20844938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference is responsible for reduction of transgene expression after Sleeping Beauty transposase mediated somatic integration.
    Rauschhuber C; Ehrhardt A
    PLoS One; 2012; 7(5):e35389. PubMed ID: 22570690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering integration loci of CHO manufacturing cell lines using long read nanopore sequencing.
    Clappier C; Böttner D; Heinzelmann D; Stadermann A; Schulz P; Schmidt M; Lindner B
    N Biotechnol; 2023 Jul; 75():31-39. PubMed ID: 36925062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.