BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1363 related articles for article (PubMed ID: 33704786)

  • 1. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general framework of noise suppression in material decomposition for dual-energy CT.
    Petrongolo M; Dong X; Zhu L
    Med Phys; 2015 Aug; 42(8):4848-62. PubMed ID: 26233212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical image-domain multimaterial decomposition for dual-energy CT.
    Xue Y; Ruan R; Hu X; Kuang Y; Wang J; Long Y; Niu T
    Med Phys; 2017 Mar; 44(3):886-901. PubMed ID: 28060999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noise suppression for dual-energy CT via penalized weighted least-square optimization with similarity-based regularization.
    Harms J; Wang T; Petrongolo M; Niu T; Zhu L
    Med Phys; 2016 May; 43(5):2676. PubMed ID: 27147376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Image synthesis with deep convolutional generative adversarial networks for material decomposition in dual-energy CT from a kilovoltage CT.
    Kawahara D; Saito A; Ozawa S; Nagata Y
    Comput Biol Med; 2021 Jan; 128():104111. PubMed ID: 33279790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An effective sinogram inpainting for complementary limited-angle dual-energy computed tomography imaging using generative adversarial networks.
    Wang Y; Zhang W; Cai A; Wang L; Tang C; Feng Z; Li L; Liang N; Yan B
    J Xray Sci Technol; 2021; 29(1):37-61. PubMed ID: 33104055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exact dual energy material decomposition from inconsistent rays (MDIR).
    Maass C; Meyer E; Kachelriess M
    Med Phys; 2011 Feb; 38(2):691-700. PubMed ID: 21452706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIRECT-Net: A unified mutual-domain material decomposition network for quantitative dual-energy CT imaging.
    Su T; Sun X; Yang J; Mi D; Zhang Y; Wu H; Fang S; Chen Y; Zheng H; Liang D; Ge Y
    Med Phys; 2022 Feb; 49(2):917-934. PubMed ID: 34935146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Image-domain multimaterial decomposition for dual-energy CT based on prior information of material images.
    Ding Q; Niu T; Zhang X; Long Y
    Med Phys; 2018 May; ():. PubMed ID: 29807395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards subpercentage uncertainty proton stopping-power mapping via dual-energy CT: Direct experimental validation and uncertainty analysis of a statistical iterative image reconstruction method.
    Medrano M; Liu R; Zhao T; Webb T; Politte DG; Whiting BR; Liao R; Ge T; Porras-Chaverri MA; O'Sullivan JA; Williamson JF
    Med Phys; 2022 Mar; 49(3):1599-1618. PubMed ID: 35029302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One half-scan dual-energy CT imaging using the Dual-domain Dual-way Estimated Network (DoDa-Net) model.
    Wang Y; Cai A; Liang N; Yu X; Zhong X; Li L; Yan B
    Quant Imaging Med Surg; 2022 Jan; 12(1):653-674. PubMed ID: 34993109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image Decomposition Algorithm for Dual-Energy Computed Tomography via Fully Convolutional Network.
    Xu Y; Yan B; Zhang J; Chen J; Zeng L; Wang L
    Comput Math Methods Med; 2018; 2018():2527516. PubMed ID: 30254689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid Optimization Method (HOM) Reconstruction with limited angle in Dual Energy Breast CT.
    Komolafe TE; Zhang C; Li M; Du Q; Zheng J; Yang X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4875-4880. PubMed ID: 31946953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Image synthesis of monoenergetic CT image in dual-energy CT using kilovoltage CT with deep convolutional generative adversarial networks.
    Kawahara D; Ozawa S; Kimura T; Nagata Y
    J Appl Clin Med Phys; 2021 Apr; 22(4):184-192. PubMed ID: 33599386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.