These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. Salazar-Parra C; Aranjuelo I; Pascual I; Erice G; Sanz-Sáez Á; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F J Plant Physiol; 2015 Feb; 174():97-109. PubMed ID: 25462972 [TBL] [Abstract][Full Text] [Related]
3. How will climate change influence grapevine cv. Tempranillo photosynthesis under different soil textures? Leibar U; Aizpurua A; Unamunzaga O; Pascual I; Morales F Photosynth Res; 2015 May; 124(2):199-215. PubMed ID: 25786733 [TBL] [Abstract][Full Text] [Related]
4. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650 [TBL] [Abstract][Full Text] [Related]
5. Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2 ]. Ruiz-Vera UM; Siebers MH; Drag DW; Ort DR; Bernacchi CJ Glob Chang Biol; 2015 Nov; 21(11):4237-49. PubMed ID: 26119211 [TBL] [Abstract][Full Text] [Related]
6. Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Martínez-Lüscher J; Morales F; Sánchez-Díaz M; Delrot S; Aguirreolea J; Gomès E; Pascual I Plant Sci; 2015 Jul; 236():168-76. PubMed ID: 26025530 [TBL] [Abstract][Full Text] [Related]
7. High Temperature and Elevated Carbon Dioxide Modify Berry Composition of Different Clones of Grapevine ( Arrizabalaga-Arriazu M; Gomès E; Morales F; Irigoyen JJ; Pascual I; Hilbert G Front Plant Sci; 2020; 11():603687. PubMed ID: 33335536 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic enhancement by elevated CO₂ depends on seasonal temperatures for warmed and non-warmed Eucalyptus globulus trees. Quentin AG; Crous KY; Barton CV; Ellsworth DS Tree Physiol; 2015 Nov; 35(11):1249-63. PubMed ID: 26496960 [TBL] [Abstract][Full Text] [Related]
9. Arbuscular Mycorrhizal Fungi Improve the Performance of Tempranillo and Cabernet Sauvignon Facing Water Deficit under Current and Future Climatic Conditions. Kozikova D; Pascual I; Goicoechea N Plants (Basel); 2024 Apr; 13(8):. PubMed ID: 38674564 [TBL] [Abstract][Full Text] [Related]
10. Contrasting acclimation responses to elevated CO Dusenge ME; Madhavji S; Way DA Glob Chang Biol; 2020 Jun; 26(6):3639-3657. PubMed ID: 32181545 [TBL] [Abstract][Full Text] [Related]
11. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129 [TBL] [Abstract][Full Text] [Related]
12. Will carbon isotope discrimination be useful as a tool for analysing the functional response of barley plants to salinity under the future atmospheric CO₂ conditions? Pérez-López U; Mena-Petite A; Muñoz-Rueda A Plant Sci; 2014 Sep; 226():71-81. PubMed ID: 25113452 [TBL] [Abstract][Full Text] [Related]
13. Do all leaf photosynthesis parameters of rice acclimate to elevated CO Cai C; Li G; Yang H; Yang J; Liu H; Struik PC; Luo W; Yin X; Di L; Guo X; Jiang W; Si C; Pan G; Zhu J Glob Chang Biol; 2018 Apr; 24(4):1685-1707. PubMed ID: 29076597 [TBL] [Abstract][Full Text] [Related]
14. Compensatory responses of CO Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973 [TBL] [Abstract][Full Text] [Related]
15. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton. Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758 [TBL] [Abstract][Full Text] [Related]
16. Ultraviolet radiation modulates C:N stoichiometry and biomass allocation in Fagus sylvatica saplings cultivated under elevated CO Uchytilová T; Krejza J; Veselá B; Holub P; Urban O; Horáček P; Klem K Plant Physiol Biochem; 2019 Jan; 134():103-112. PubMed ID: 30097290 [TBL] [Abstract][Full Text] [Related]
17. Is vegetative area, photosynthesis, or grape C uploading involved in the climate change-related grape sugar/anthocyanin decoupling in Tempranillo? Salazar-Parra C; Aranjuelo I; Pascual I; Aguirreolea J; Sánchez-Díaz M; Irigoyen JJ; Araus JL; Morales F Photosynth Res; 2018 Oct; 138(1):115-128. PubMed ID: 29980966 [TBL] [Abstract][Full Text] [Related]
18. Increasing atmospheric CO2 and canopy temperature induces anatomical and physiological changes in leaves of the C4 forage species Panicum maximum. Habermann E; San Martin JAB; Contin DR; Bossan VP; Barboza A; Braga MR; Groppo M; Martinez CA PLoS One; 2019; 14(2):e0212506. PubMed ID: 30779815 [TBL] [Abstract][Full Text] [Related]
19. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
20. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: an updated survey. Irigoyen JJ; Goicoechea N; Antolín MC; Pascual I; Sánchez-Díaz M; Aguirreolea J; Morales F Plant Sci; 2014 Sep; 226():22-9. PubMed ID: 25113447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]