BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33705150)

  • 1. Cu-Sb-S Ternary Semiconductor Nanoparticle Plasmonics.
    Liu G; Qi S; Chen J; Lou Y; Zhao Y; Burda C
    Nano Lett; 2021 Mar; 21(6):2610-2617. PubMed ID: 33705150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies.
    Hsu SW; Ngo C; Tao AR
    Nano Lett; 2014 May; 14(5):2372-80. PubMed ID: 24738726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study on the localized surface plasmon resonance of boron- and phosphorus-doped silicon nanocrystals.
    Zhou S; Pi X; Ni Z; Ding Y; Jiang Y; Jin C; Delerue C; Yang D; Nozaki T
    ACS Nano; 2015 Jan; 9(1):378-86. PubMed ID: 25551330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.
    Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ
    Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expanding the spectral tunability of plasmonic resonances in doped metal-oxide nanocrystals through cooperative cation-anion codoping.
    Ye X; Fei J; Diroll BT; Paik T; Murray CB
    J Am Chem Soc; 2014 Aug; 136(33):11680-6. PubMed ID: 25066599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic Strategies for Semiconductor Nanocrystals Expressing Localized Surface Plasmon Resonance.
    Niezgoda JS; Rosenthal SJ
    Chemphyschem; 2016 Mar; 17(5):645-53. PubMed ID: 26530667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.
    Liu X; Swihart MT
    Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement.
    Greenberg BL; Ganguly S; Held JT; Kramer NJ; Mkhoyan KA; Aydil ES; Kortshagen UR
    Nano Lett; 2015 Dec; 15(12):8162-9. PubMed ID: 26551232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectrally tunable infrared plasmonic F,Sn:In
    Cho SH; Roccapriore KM; Dass CK; Ghosh S; Choi J; Noh J; Reimnitz LC; Heo S; Kim K; Xie K; Korgel BA; Li X; Hendrickson JR; Hachtel JA; Milliron DJ
    J Chem Phys; 2020 Jan; 152(1):014709. PubMed ID: 31914766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach.
    Yibi Y; Chen J; Xue J; Song J; Zeng H
    Sci Bull (Beijing); 2017 May; 62(10):693-699. PubMed ID: 36659440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the localized surface plasmon resonance in Cu(2-x)Se nanocrystals by postsynthetic ligand exchange.
    Balitskii OA; Sytnyk M; Stangl J; Primetzhofer D; Groiss H; Heiss W
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17770-5. PubMed ID: 25233007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective synthesis of ternary copper-antimony sulfide nanocrystals.
    Xu D; Shen S; Zhang Y; Gu H; Wang Q
    Inorg Chem; 2013 Nov; 52(22):12958-62. PubMed ID: 24175875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anisotropic Plasmonic CuS Nanocrystals as a Natural Electronic Material with Hyperbolic Optical Dispersion.
    Córdova-Castro RM; Casavola M; van Schilfgaarde M; Krasavin AV; Green MA; Richards D; Zayats AV
    ACS Nano; 2019 Jun; 13(6):6550-6560. PubMed ID: 31117375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic Cu
    Xu L; Zhang J; Zhao J; Liu C; Li N; Zhang S; Wang Z; Xi M
    ACS Appl Bio Mater; 2022 Apr; 5(4):1658-1669. PubMed ID: 35289599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.
    Tandon B; Shanker GS; Nag A
    J Phys Chem Lett; 2014 Jul; 5(13):2306-11. PubMed ID: 26279551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications.
    Knowles KE; Hartstein KH; Kilburn TB; Marchioro A; Nelson HD; Whitham PJ; Gamelin DR
    Chem Rev; 2016 Sep; 116(18):10820-51. PubMed ID: 27159664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled Synthesis and Exploration of Cu
    Kays JC; Conti CR; Margaronis A; Kuszynski JE; Strouse GF; Dennis AM
    Chem Mater; 2021 Sep; 33(18):7408-7416. PubMed ID: 35221488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand Tuning of Localized Surface Plasmon Resonances in Antimony-Doped Tin Oxide Nanocrystals.
    Balitskii O; Mashkov O; Barabash A; Rehm V; Afify HA; Li N; Hammer MS; Brabec CJ; Eigen A; Halik M; Yarema O; Yarema M; Wood V; Stifter D; Heiss W
    Nanomaterials (Basel); 2022 Oct; 12(19):. PubMed ID: 36234596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.