These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33705150)

  • 21. Competition between Depletion Effects and Coupling in the Plasmon Modulation of Doped Metal Oxide Nanocrystals.
    Tandon B; Agrawal A; Heo S; Milliron DJ
    Nano Lett; 2019 Mar; 19(3):2012-2019. PubMed ID: 30794418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.
    Scotognella F; Della Valle G; Srimath Kandada AR; Dorfs D; Zavelani-Rossi M; Conforti M; Miszta K; Comin A; Korobchevskaya K; Lanzani G; Manna L; Tassone F
    Nano Lett; 2011 Nov; 11(11):4711-7. PubMed ID: 21939261
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anomalous plasmon resonance from confined diffusive charges: high quality and tunability from mid to far infrared wavebands.
    Gu Y; Li X; Chen J; Zeng H
    Opt Express; 2016 Dec; 24(26):29908-29921. PubMed ID: 28059375
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal.
    Song H; Lee JH; Eom SY; Choi D; Jeong KS
    ACS Nano; 2023 Sep; 17(17):16895-16903. PubMed ID: 37579184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Interplay of Shape and Crystalline Anisotropies in Plasmonic Semiconductor Nanocrystals.
    Kim J; Agrawal A; Krieg F; Bergerud A; Milliron DJ
    Nano Lett; 2016 Jun; 16(6):3879-84. PubMed ID: 27181287
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals.
    Gibbs SL; Staller CM; Milliron DJ
    Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metallic-like stoichiometric copper sulfide nanocrystals: phase- and shape-selective synthesis, near-infrared surface plasmon resonance properties, and their modeling.
    Xie Y; Carbone L; Nobile C; Grillo V; D'Agostino S; Della Sala F; Giannini C; Altamura D; Oelsner C; Kryschi C; Cozzoli PD
    ACS Nano; 2013 Aug; 7(8):7352-69. PubMed ID: 23859591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Responsive Plasmon Modulation in Dopant-Segregated Nanocrystals.
    Tandon B; Gibbs SL; Dean C; Milliron DJ
    Nano Lett; 2023 Feb; 23(3):908-915. PubMed ID: 36656798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Imaging Infrared Plasmon Hybridization in Doped Semiconductor Nanocrystal Dimers.
    Olafsson A; Khorasani S; Busche JA; Araujo JJ; Idrobo JC; Gamelin DR; Masiello DJ; Camden JP
    J Phys Chem Lett; 2021 Oct; 12(42):10270-10276. PubMed ID: 34652912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper-Coupled Electron Transfer in Colloidal Plasmonic Copper-Sulfide Nanocrystals Probed by in Situ Spectroelectrochemistry.
    Hartstein KH; Brozek CK; Hinterding SOM; Gamelin DR
    J Am Chem Soc; 2018 Mar; 140(9):3434-3442. PubMed ID: 29462551
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical Control of Plasmons in Metal Chalcogenide and Metal Oxide Nanostructures.
    Mattox TM; Ye X; Manthiram K; Schuck PJ; Alivisatos AP; Urban JJ
    Adv Mater; 2015 Oct; 27(38):5830-7. PubMed ID: 26173628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics.
    Gu Y; Zhu Z; Song J; Zeng H
    Nanoscale; 2017 Dec; 9(48):19374-19383. PubMed ID: 29199742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Size Dependence of Doping by a Vacancy Formation Reaction in Copper Sulfide Nanocrystals.
    Elimelech O; Liu J; Plonka AM; Frenkel AI; Banin U
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10335-10340. PubMed ID: 28639731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions.
    Xie Y; Riedinger A; Prato M; Casu A; Genovese A; Guardia P; Sottini S; Sangregorio C; Miszta K; Ghosh S; Pellegrino T; Manna L
    J Am Chem Soc; 2013 Nov; 135(46):17630-7. PubMed ID: 24128337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong Purcell enhancement at telecom wavelengths afforded by spinel Fe
    Dolgopolova EA; Li D; Hartman ST; Watt J; Ríos C; Hu J; Kukkadapu R; Casson J; Bose R; Malko AV; Blake AV; Ivanov S; Roslyak O; Piryatinski A; Htoon H; Chen HT; Pilania G; Hollingsworth JA
    Nanoscale Horiz; 2022 Feb; 7(3):267-275. PubMed ID: 34908075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Morphology Controlled Synthesis of Composition Related Plasmonic CuCdS Alloy Nanocrystals.
    Gao Y; Wang L; Tian G; Zang S; Wang H; Niu J; Li LS
    Front Chem; 2020; 8():628536. PubMed ID: 33425861
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.
    Runnerstrom EL; Bergerud A; Agrawal A; Johns RW; Dahlman CJ; Singh A; Selbach SM; Milliron DJ
    Nano Lett; 2016 May; 16(5):3390-8. PubMed ID: 27111427
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence.
    Lie SQ; Wang DM; Gao MX; Huang CZ
    Nanoscale; 2014 Sep; 6(17):10289-96. PubMed ID: 25065365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Noble-metal-free plasmonic photocatalyst: hydrogen doped semiconductors.
    Ma X; Dai Y; Yu L; Huang B
    Sci Rep; 2014 Feb; 4():3986. PubMed ID: 24496400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Near-Infrared Localized Surface Plasmon Resonance of F, In-Codoped CdO Nanocrystals.
    Giannuzzi R; De Donato F; De Trizio L; Monteduro AG; Maruccio G; Scarfiello R; Qualtieri A; Manna L
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39921-39929. PubMed ID: 31577409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.