These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33705302)

  • 1. Metabolic ROS Signaling: To Immunity and Beyond.
    Andreyev AY; Kushnareva YE; Starkova NN; Starkov AA
    Biochemistry (Mosc); 2020 Dec; 85(12):1650-1667. PubMed ID: 33705302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases.
    Banerjee S; Ghosh S; Mandal A; Ghosh N; Sil PC
    Arch Toxicol; 2020 Jul; 94(7):2293-2317. PubMed ID: 32524152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nrf2 activation through the PI3K/GSK-3 axis protects neuronal cells from Aβ-mediated oxidative and metabolic damage.
    Sotolongo K; Ghiso J; Rostagno A
    Alzheimers Res Ther; 2020 Jan; 12(1):13. PubMed ID: 31931869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic reprogramming of human cells in response to oxidative stress: implications in the pathophysiology and therapy of mitochondrial diseases.
    Wu YT; Wu SB; Wei YH
    Curr Pharm Des; 2014; 20(35):5510-26. PubMed ID: 24606797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity.
    Rashida Gnanaprakasam JN; Wu R; Wang R
    Front Immunol; 2018; 9():1075. PubMed ID: 29868027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of bioenergetics, temperature and cadmium on liver mitochondria reactive oxygen species production and consumption.
    Okoye CN; MacDonald-Jay N; Kamunde C
    Aquat Toxicol; 2019 Sep; 214():105264. PubMed ID: 31377504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress and protein aggregation during biological aging.
    Squier TC
    Exp Gerontol; 2001 Sep; 36(9):1539-50. PubMed ID: 11525876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of mitochondria in reactive oxygen species metabolism and signaling.
    Starkov AA
    Ann N Y Acad Sci; 2008 Dec; 1147():37-52. PubMed ID: 19076429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species.
    Berry BJ; Trewin AJ; Amitrano AM; Kim M; Wojtovich AP
    J Mol Biol; 2018 Oct; 430(21):3873-3891. PubMed ID: 29626541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia.
    Roy Chowdhury S; Banerji V
    Oxid Med Cell Longev; 2018; 2018():2426712. PubMed ID: 29682155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes.
    Hamanaka RB; Chandel NS
    Trends Biochem Sci; 2010 Sep; 35(9):505-13. PubMed ID: 20430626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species.
    Kadlec AO; Beyer AM; Ait-Aissa K; Gutterman DD
    Basic Res Cardiol; 2016 May; 111(3):26. PubMed ID: 26992928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders.
    Stefano GB; Challenger S; Kream RM
    Eur J Nutr; 2016 Dec; 55(8):2339-2345. PubMed ID: 27084094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation.
    Grancara S; Zonta F; Ohkubo S; Brunati AM; Agostinelli E; Toninello A
    Amino Acids; 2015 May; 47(5):869-83. PubMed ID: 25792113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection.
    Sas K; Szabó E; Vécsei L
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeting Evolutionary Conserved Oxidative Stress and Immunometabolic Pathways for the Treatment of Respiratory Infectious Diseases.
    Erlich JR; To EE; Liong S; Brooks R; Vlahos R; O'Leary JJ; Brooks DA; Selemidis S
    Antioxid Redox Signal; 2020 May; 32(13):993-1013. PubMed ID: 32008371
    [No Abstract]   [Full Text] [Related]  

  • 19. ROS, mitochondria and the regulation of autophagy.
    Scherz-Shouval R; Elazar Z
    Trends Cell Biol; 2007 Sep; 17(9):422-7. PubMed ID: 17804237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of mitochondrial reactive oxygen species in physiology.
    Angelova PR; Abramov AY
    Free Radic Biol Med; 2016 Nov; 100():81-85. PubMed ID: 27296839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.