These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

482 related articles for article (PubMed ID: 33705337)

  • 1. Multimodal Gait Recognition for Neurodegenerative Diseases.
    Zhao A; Li J; Dong J; Qi L; Zhang Q; Li N; Wang X; Zhou H
    IEEE Trans Cybern; 2022 Sep; 52(9):9439-9453. PubMed ID: 33705337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimodal Gait Abnormality Recognition Using a Convolutional Neural Network-Bidirectional Long Short-Term Memory (CNN-BiLSTM) Network Based on Multi-Sensor Data Fusion.
    Li J; Liang W; Yin X; Li J; Guan W
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multimodal Parkinson quantification by fusing eye and gait motion patterns, using covariance descriptors, from non-invasive computer vision.
    Archila J; Manzanera A; Martínez F
    Comput Methods Programs Biomed; 2022 Mar; 215():106607. PubMed ID: 34998167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data.
    Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait Recognition with Self-Supervised Learning of Gait Features Based on Vision Transformers.
    Pinčić D; Sušanj D; Lenac K
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Vertical Ground Reaction Forces Pattern Visualization in Neurodegenerative Diseases Identification Using Deep Learning and Recurrence Plot Image Feature Extraction.
    Lin CW; Wen TC; Setiawan F
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32664354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gender Recognition Based on Gradual and Ensemble Learning from Multi-View Gait Energy Images and Poses.
    Leung TM; Chan KL
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel plantar pressure analysis method to signify gait dynamics in Parkinson's disease.
    Sun Y; Cheng Y; You Y; Wang Y; Zhu Z; Yu Y; Han J; Wu J; Yu N
    Math Biosci Eng; 2023 Jun; 20(8):13474-13490. PubMed ID: 37679098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and validation of temporal gait features using a markerless 2D video system.
    Verlekar TT; De Vroey H; Claeys K; Hallez H; Soares LD; Correia PL
    Comput Methods Programs Biomed; 2019 Jul; 175():45-51. PubMed ID: 31104714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathological-Gait Recognition Using Spatiotemporal Graph Convolutional Networks and Attention Model.
    Kim J; Seo H; Naseem MT; Lee CS
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Gait Recognition: A Survey.
    Sepas-Moghaddam A; Etemad A
    IEEE Trans Pattern Anal Mach Intell; 2023 Jan; 45(1):264-284. PubMed ID: 35167443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks.
    Filtjens B; Ginis P; Nieuwboer A; Slaets P; Vanrumste B
    J Neuroeng Rehabil; 2022 May; 19(1):48. PubMed ID: 35597950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural networks for detection and classification of walking pattern changes due to ageing.
    Begg R; Kamruzzaman J
    Australas Phys Eng Sci Med; 2006 Jun; 29(2):188-95. PubMed ID: 16845924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Evaluation of Feature Encoding Techniques for Gait Analysis Using Multimodal Sensory Data.
    Fatima R; Khan MH; Nisar MA; Doniec R; Farid MS; Grzegorzek M
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A lightweight double-channel depthwise separable convolutional neural network for multimodal fusion gait recognition.
    Liu X; Chen M; Liang T; Lou C; Wang H; Liu X
    Math Biosci Eng; 2022 Jan; 19(2):1195-1212. PubMed ID: 35135200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Spatiotemporal Deep Learning Approach for Automatic Pathological Gait Classification.
    Albuquerque P; Verlekar TT; Correia PL; Soares LD
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of Fine-Grained Walking Patterns Using a Smartwatch with Deep Attentive Neural Networks.
    Kim H; Kim HJ; Park J; Ryu JK; Kim SC
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatio-Spectral Representation Learning for Electroencephalographic Gait-Pattern Classification.
    Goh SK; Abbass HA; Tan KC; Al-Mamun A; Thakor N; Bezerianos A; Li J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1858-1867. PubMed ID: 30106679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benefits of nonlinear analysis indices of walking stride interval in the evaluation of neurodegenerative diseases.
    Dierick F; Vandevoorde C; Chantraine F; White O; Buisseret F
    Hum Mov Sci; 2021 Feb; 75():102741. PubMed ID: 33310379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An efficient Gait Dynamics classification method for Neurodegenerative Diseases using Brain signals.
    Mole SSS; Sujatha K
    J Med Syst; 2019 Jun; 43(8):245. PubMed ID: 31240410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.