These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 337054)

  • 21. Substance P-containing pyramidal neurons in the cat somatic sensory cortex.
    Conti F; De Biasi S; Fabri M; Abdullah L; Manzoni T; Petrusz P
    J Comp Neurol; 1992 Aug; 322(1):136-48. PubMed ID: 1385486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Golgi and Nissl studies of the visual cortex of the bottlenose dolphin.
    Garey LJ; Winkelmann E; Brauer K
    J Comp Neurol; 1985 Oct; 240(3):305-21. PubMed ID: 2415558
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Quantitative histological studies of the variability of Golgi-impregnated cortical neurons in rats and cats].
    Schierhorn H; Nagel I
    Z Mikrosk Anat Forsch; 1975; 89(6):1147-56. PubMed ID: 1234816
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Maturation of neurons in neocortical slice cultures: A light and electron microscopic study on in situ and in vitro material.
    Caeser M; Schüz A
    J Hirnforsch; 1992; 33(4-5):429-43. PubMed ID: 1282530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Topographical relations between ipsilateral cortical afferents and callosal neurons in the second somatic sensory area of cats.
    Barbaresi P; Minelli A; Manzoni T
    J Comp Neurol; 1994 May; 343(4):582-96. PubMed ID: 8034789
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immunohistochemical localization of calcium-binding proteins, parvalbumin and calbindin-D 28k, in the adult and developing visual cortex of cats: a light and electron microscopic study.
    Stichel CC; Singer W; Heizmann CW; Norman AW
    J Comp Neurol; 1987 Aug; 262(4):563-77. PubMed ID: 3667965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corticocortical neurons projecting to the medial and lateral banks of the middle suprasylvian sulcus in the cat: an experimental study with the horseradish peroxidase method.
    Kawamura K; Naito J
    J Comp Neurol; 1980 Oct; 193(4):1009-22. PubMed ID: 7430435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [The morphological characteristics of the callosal neurons of the first auditory area of the cortex (AI) in the cat].
    Gonchar IuA; Maĭskiĭ VA
    Neirofiziologiia; 1990; 22(2):249-57. PubMed ID: 1695995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Sources of the afferent pathways of the motor cortex in cats revealed by using the peroxidase method].
    Badmindra VP; Valberg F
    Arkh Anat Gistol Embriol; 1978 May; 74(5):13-8. PubMed ID: 666578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Study of the afferent connections of the visual area of the lower bank of the cruciate sulcus of the cerebral cortex of the cat using the retrograde horseradish peroxidase axon transport technic].
    Pigarev IN; Mukhina IuK
    Neirofiziologiia; 1985; 17(1):43-9. PubMed ID: 3974758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Experience with the use of horseradish peroxidase for light and electron microscope studies of interneuronal connections].
    Babmindra VP; Lenkov DN; Tolchenova GA; Imankulova ChS; Bragina TA
    Arkh Anat Gistol Embriol; 1976 Jan; 70(1):101-5. PubMed ID: 1252130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Types of neurons in the visual cortex of the rat, identified in Nissl- and deimpregnated Golgi preparations].
    Werner L; Hedlich A; Winkelmann E
    J Hirnforsch; 1985; 26(2):173-86. PubMed ID: 2410488
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Three-dimensional aspects of the cerebral cortex: a study by the Golgi-Cox method with reflected light].
    Marty R; Fuentes C
    Brain Res; 1968 Oct; 11(1):124-33. PubMed ID: 4881150
    [No Abstract]   [Full Text] [Related]  

  • 34. Consequences of reduced cerebral blood flow in brain development. I. Gross morphology, histology, and callosal connectivity.
    Miller B; Nagy D; Finlay BL; Chance B; Kobayashi A; Nioka S
    Exp Neurol; 1993 Dec; 124(2):326-42. PubMed ID: 7507062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparative electron microscopic study of the visual cortex neurons of the cat in postnatal ontogeny].
    Kakabadze IM
    Tsitologiia; 1985 Oct; 27(10):1123-8. PubMed ID: 4071658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex.
    Kaneko T; Caria MA; Asanuma H
    J Comp Neurol; 1994 Jul; 345(2):172-84. PubMed ID: 7929898
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-microscopic demonstration of methylene blue accumulation sites in mouse brain after supravital staining.
    Müller T
    Acta Anat (Basel); 1992; 144(1):39-44. PubMed ID: 1514358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of experimental factors on the tinctorial properties of structural elements of the mammalian cerebral cortex (intravital microscopic study)].
    Samoĭlov MO; Semenov DG
    Arkh Anat Gistol Embriol; 1978 May; 74(5):103-8. PubMed ID: 78699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat.
    Mitani A; Shimokouchi M; Itoh K; Nomura S; Kudo M; Mizuno N
    J Comp Neurol; 1985 May; 235(4):430-47. PubMed ID: 3998218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines.
    Peters A; Kaiserman-Abramof IR
    Am J Anat; 1970 Apr; 127(4):321-55. PubMed ID: 4985058
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.