These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 33705424)

  • 1. An epidemic model for non-first-order transmission kinetics.
    Mun EY; Geng F
    PLoS One; 2021; 16(3):e0247512. PubMed ID: 33705424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty quantification in epidemiological models for the COVID-19 pandemic.
    Taghizadeh L; Karimi A; Heitzinger C
    Comput Biol Med; 2020 Oct; 125():104011. PubMed ID: 33091766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An SIR-type epidemiological model that integrates social distancing as a dynamic law based on point prevalence and socio-behavioral factors.
    Cabrera M; Córdova-Lepe F; Gutiérrez-Jara JP; Vogt-Geisse K
    Sci Rep; 2021 May; 11(1):10170. PubMed ID: 33986347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Epidemiological Model Considering Isolation to Predict COVID-19 Trends in Tokyo, Japan: Numerical Analysis.
    Utamura M; Koizumi M; Kirikami S
    JMIR Public Health Surveill; 2020 Dec; 6(4):e23624. PubMed ID: 33259325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control with uncertain data of socially structured compartmental epidemic models.
    Albi G; Pareschi L; Zanella M
    J Math Biol; 2021 May; 82(7):63. PubMed ID: 34023964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wording the trajectory of the three-year COVID-19 epidemic in a general population - Belgium.
    Vanderpas J; Dramaix M; Coppieters Y
    BMC Public Health; 2024 Feb; 24(1):638. PubMed ID: 38424526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter.
    Ganyani T; Faes C; Chowell G; Hens N
    Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stochastic compartmental model to simulate the Covid-19 epidemic spread on a simple network.
    Bazzani A; Lunedei E; Rambaldi S
    Theor Biol Forum; 2020 Jan; 113(1-2):31-46. PubMed ID: 33929002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic models for epidemic dynamics with social heterogeneity.
    Dimarco G; Perthame B; Toscani G; Zanella M
    J Math Biol; 2021 Jun; 83(1):4. PubMed ID: 34173890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Travel-related control measures to contain the COVID-19 pandemic: a rapid review.
    Burns J; Movsisyan A; Stratil JM; Coenen M; Emmert-Fees KM; Geffert K; Hoffmann S; Horstick O; Laxy M; Pfadenhauer LM; von Philipsborn P; Sell K; Voss S; Rehfuess E
    Cochrane Database Syst Rev; 2020 Oct; 10():CD013717. PubMed ID: 33502002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of control measures on COVID-19 transmission in Italy: Comparison with Guangdong province in China.
    Liu PY; He S; Rong LB; Tang SY
    Infect Dis Poverty; 2020 Sep; 9(1):130. PubMed ID: 32938502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemic plateau in critical susceptible-infected-removed dynamics with nontrivial initial conditions.
    Radicchi F; Bianconi G
    Phys Rev E; 2020 Nov; 102(5-1):052309. PubMed ID: 33327169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Epidemic Model with Time-Distributed Recovery and Death Rates.
    Ghosh S; Volpert V; Banerjee M
    Bull Math Biol; 2022 Jun; 84(8):78. PubMed ID: 35763126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MAM: Flexible Monte-Carlo Agent based model for modelling COVID-19 spread.
    De-Leon H; Aran D
    J Biomed Inform; 2023 May; 141():104364. PubMed ID: 37061013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Mitigation and Control Policies in Realistic Epidemic Models Accounting for Household Transmission Dynamics.
    Alarid-Escudero F; Andrews JR; Goldhaber-Fiebert JD
    Med Decis Making; 2024 Jan; 44(1):5-17. PubMed ID: 37953597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan.
    Moein S; Nickaeen N; Roointan A; Borhani N; Heidary Z; Javanmard SH; Ghaisari J; Gheisari Y
    Sci Rep; 2021 Feb; 11(1):4725. PubMed ID: 33633275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple transmission dynamics model for predicting the evolution of COVID-19 under control measures in China.
    Shang C; Yang Y; Chen GY; Shang XD
    Epidemiol Infect; 2021 Feb; 149():e43. PubMed ID: 33563354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive model with analysis of the initial spread of COVID-19 in India.
    Ghosh S
    Int J Med Inform; 2020 Nov; 143():104262. PubMed ID: 32911257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An evaluation of COVID-19 transmission control in Wenzhou using a modified SEIR model.
    Li W; Gong J; Zhou J; Zhang L; Wang D; Li J; Shi C; Fan H
    Epidemiol Infect; 2021 Jan; 149():e2. PubMed ID: 33413715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the early phase of the Belgian COVID-19 epidemic using a stochastic compartmental model and studying its implied future trajectories.
    Abrams S; Wambua J; Santermans E; Willem L; Kuylen E; Coletti P; Libin P; Faes C; Petrof O; Herzog SA; Beutels P; Hens N
    Epidemics; 2021 Jun; 35():100449. PubMed ID: 33799289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.