BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33705756)

  • 1. Cell nucleus as a microrheological probe to study the rheology of the cytoskeleton.
    Moradi M; Nazockdast E
    Biophys J; 2021 May; 120(9):1542-1564. PubMed ID: 33705756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cytoplasm of living cells behaves as a poroelastic material.
    Moeendarbary E; Valon L; Fritzsche M; Harris AR; Moulding DA; Thrasher AJ; Stride E; Mahadevan L; Charras GT
    Nat Mater; 2013 Mar; 12(3):253-61. PubMed ID: 23291707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic power-law viscoelasticity of living cells is dominated by cytoskeletal network structure.
    Hang JT; Wang H; Wang BC; Xu GK
    Acta Biomater; 2024 May; 180():197-205. PubMed ID: 38599439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput microfluidic micropipette aspiration device to probe time-scale dependent nuclear mechanics in intact cells.
    Davidson PM; Fedorchak GR; Mondésert-Deveraux S; Bell ES; Isermann P; Aubry D; Allena R; Lammerding J
    Lab Chip; 2019 Nov; 19(21):3652-3663. PubMed ID: 31559980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling the rheology of living cell cytoplasm: poroviscoelasticity and fluid-to-solid transition.
    Thekkethil N; Köry J; Guo M; Stewart PS; Hill NA; Luo X
    Biomech Model Mechanobiol; 2024 Jul; ():. PubMed ID: 38976113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power-law creep behavior of a semiflexible chain.
    Majumdar A; Suki B; Rosenblatt N; Alencar AM; Stamenović D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041922. PubMed ID: 18999470
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filamin-a and rheological properties of cultured melanoma cells.
    Coughlin MF; Puig-de-Morales M; Bursac P; Mellema M; Millet E; Fredberg JJ
    Biophys J; 2006 Mar; 90(6):2199-205. PubMed ID: 16387775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular mechanics: connecting rheology and mechanotransduction.
    Mathieu S; Manneville JB
    Curr Opin Cell Biol; 2019 Feb; 56():34-44. PubMed ID: 30253328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of normal versus cancerous breast cells.
    Smelser AM; Macosko JC; O'Dell AP; Smyre S; Bonin K; Holzwarth G
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1335-47. PubMed ID: 25929519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy study revealed velocity-dependence and nonlinearity of nanoscale poroelasticity of eukaryotic cells.
    Mollaeian K; Liu Y; Bi S; Ren J
    J Mech Behav Biomed Mater; 2018 Feb; 78():65-73. PubMed ID: 29136577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing cytoskeletal pre-stress and nuclear mechanics in endothelial cells with spatiotemporally controlled (de-)adhesion kinetics on micropatterned substrates.
    Versaevel M; Riaz M; Corne T; Grevesse T; Lantoine J; Mohammed D; Bruyère C; Alaimo L; De Vos WH; Gabriele S
    Cell Adh Migr; 2017 Jan; 11(1):98-109. PubMed ID: 27111836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of cortical elasticity in Drosophila melanogaster embryos using ferrofluids.
    Doubrovinski K; Swan M; Polyakov O; Wieschaus EF
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1051-1056. PubMed ID: 28096360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring cell viscoelastic properties using a force-spectrometer: influence of protein-cytoplasm interactions.
    Canetta E; Duperray A; Leyrat A; Verdier C
    Biorheology; 2005; 42(5):321-33. PubMed ID: 16308464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing eukaryotic cell mechanics via mesoscopic simulations.
    Lykov K; Nematbakhsh Y; Shang M; Lim CT; Pivkin IV
    PLoS Comput Biol; 2017 Sep; 13(9):e1005726. PubMed ID: 28922399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load.
    Zuela-Sopilniak N; Bar-Sela D; Charar C; Wintner O; Gruenbaum Y; Buxboim A
    Mol Biol Cell; 2020 Aug; 31(17):1943-1950. PubMed ID: 32583745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring Cell Viscoelastic Properties Using a Microfluidic Extensional Flow Device.
    Guillou L; Dahl JB; Lin JG; Barakat AI; Husson J; Muller SJ; Kumar S
    Biophys J; 2016 Nov; 111(9):2039-2050. PubMed ID: 27806284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties of Intermediate Filament Proteins.
    Charrier EE; Janmey PA
    Methods Enzymol; 2016; 568():35-57. PubMed ID: 26795466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the Adherent Cell Response to the Substrate Stiffness Using Tensegrity.
    Khounsaraki GM; Movahedi M; Oscuii HN; Voloshin A
    Ann Biomed Eng; 2024 May; 52(5):1213-1221. PubMed ID: 38324074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.