BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33705876)

  • 21. Use of a fundamental approach to spray-drying formulation design to facilitate the development of multi-component dry powder aerosols for respiratory drug delivery.
    Hoe S; Ivey JW; Boraey MA; Shamsaddini-Shahrbabak A; Javaheri E; Matinkhoo S; Finlay WH; Vehring R
    Pharm Res; 2014 Feb; 31(2):449-65. PubMed ID: 23974958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of spray dried powders with nucleic acid-containing PEI nanoparticles.
    Keil TWM; Feldmann DP; Costabile G; Zhong Q; da Rocha S; Merkel OM
    Eur J Pharm Biopharm; 2019 Oct; 143():61-69. PubMed ID: 31445157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering the right formulation for enhanced drug delivery.
    Ke WR; Chang RYK; Chan HK
    Adv Drug Deliv Rev; 2022 Dec; 191():114561. PubMed ID: 36191861
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.
    Li X; Vogt FG; Hayes D; Mansour HM
    Eur J Pharm Sci; 2014 Feb; 52():191-205. PubMed ID: 24215736
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A dry powder formulation for peripheral lung delivery and absorption of an anti-SARS-CoV-2 ACE2 decoy polypeptide.
    Glieca S; Cavazzini D; Levati E; Garrapa V; Bolchi A; Franceschi V; Odau S; Ottonello S; Donofrio G; Füner J; Sonvico F; Bettini R; Montanini B; Buttini F
    Eur J Pharm Sci; 2023 Dec; 191():106609. PubMed ID: 37838239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heat-Stable Dry Powder Oxytocin Formulations for Delivery by Oral Inhalation.
    Fabio K; Curley K; Guarneri J; Adamo B; Laurenzi B; Grant M; Offord R; Kraft K; Leone-Bay A
    AAPS PharmSciTech; 2015 Dec; 16(6):1299-306. PubMed ID: 25776985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advancements in Particle Engineering for Inhalation Delivery of Small Molecules and Biotherapeutics.
    Chang RYK; Chan HK
    Pharm Res; 2022 Dec; 39(12):3047-3061. PubMed ID: 36071354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formulation Design of Dry Powders for Inhalation.
    Weers JG; Miller DP
    J Pharm Sci; 2015 Oct; 104(10):3259-88. PubMed ID: 26296055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmaceutical aerosols for the treatment and prevention of tuberculosis.
    Hanif SN; Garcia-Contreras L
    Front Cell Infect Microbiol; 2012; 2():118. PubMed ID: 22973562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Powder, capsule and device: An imperative ménage à trois for respirable dry powders.
    Schoubben A; Blasi P; Giontella A; Giovagnoli S; Ricci M
    Int J Pharm; 2015 Oct; 494(1):40-8. PubMed ID: 26255220
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dry powder inhalation: past, present and future.
    de Boer AH; Hagedoorn P; Hoppentocht M; Buttini F; Grasmeijer F; Frijlink HW
    Expert Opin Drug Deliv; 2017 Apr; 14(4):499-512. PubMed ID: 27534768
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerosolization characteristics of dry powder inhaler formulations for the excipient enhanced growth (EEG) application: effect of spray drying process conditions on aerosol performance.
    Son YJ; Worth Longest P; Hindle M
    Int J Pharm; 2013 Feb; 443(1-2):137-45. PubMed ID: 23313343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of particle properties in pharmaceutical powder inhalation formulations.
    Chew NY; Chan HK
    J Aerosol Med; 2002; 15(3):325-30. PubMed ID: 12396421
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of inhalable hyaluronan/mannitol composite dry powders for flucytosine repositioning in local therapy of lung infections.
    Costabile G; d'Angelo I; d'Emmanuele di Villa Bianca R; Mitidieri E; Pompili B; Del Porto P; Leoni L; Visca P; Miro A; Quaglia F; Imperi F; Sorrentino R; Ungaro F
    J Control Release; 2016 Sep; 238():80-91. PubMed ID: 27449745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a Carrier Free Dry Powder Inhalation Formulation of Ketotifen for Pulmonary Drug Delivery.
    Azari F; Ghanbarzadeh S; Safdari R; Yaqoubi S; Adibkia K; Hamishehkar H
    Drug Res (Stuttg); 2020 Jan; 70(1):26-32. PubMed ID: 31533157
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis.
    Eedara BB; Tucker IG; Das SC
    Int J Pharm; 2016 Jun; 506(1-2):174-83. PubMed ID: 27091294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formulation of spray dried enzymes for dry powder inhalers: An integrated methodology.
    Fernandes DA; Costa E; Leandro P; Corvo ML
    Int J Pharm; 2022 Mar; 615():121492. PubMed ID: 35063592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dry-powder formulations of non-covalent protein complexes with linear or miktoarm copolymers for pulmonary delivery.
    Nieto-Orellana A; Coghlan D; Rothery M; Falcone FH; Bosquillon C; Childerhouse N; Mantovani G; Stolnik S
    Int J Pharm; 2018 Apr; 540(1-2):78-88. PubMed ID: 29425761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical stability of dry powder inhaler formulations.
    Shetty N; Cipolla D; Park H; Zhou QT
    Expert Opin Drug Deliv; 2020 Jan; 17(1):77-96. PubMed ID: 31815554
    [No Abstract]   [Full Text] [Related]  

  • 40. Inhaled dry powder formulations for treating tuberculosis.
    Das S; Tucker I; Stewart P
    Curr Drug Deliv; 2015; 12(1):26-39. PubMed ID: 25030114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.