These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 33705989)
1. 3D bioprinting of prevascularised implants for the repair of critically-sized bone defects. Nulty J; Freeman FE; Browe DC; Burdis R; Ahern DP; Pitacco P; Lee YB; Alsberg E; Kelly DJ Acta Biomater; 2021 May; 126():154-169. PubMed ID: 33705989 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of cartilaginous templates for large bone defect healing. Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556 [TBL] [Abstract][Full Text] [Related]
3. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
4. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering. Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752 [TBL] [Abstract][Full Text] [Related]
5. Biofabrication of Prevascularised Hypertrophic Cartilage Microtissues for Bone Tissue Engineering. Nulty J; Burdis R; Kelly DJ Front Bioeng Biotechnol; 2021; 9():661989. PubMed ID: 34169064 [TBL] [Abstract][Full Text] [Related]
6. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
7. Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo. Cidonio G; Glinka M; Kim YH; Kanczler JM; Lanham SA; Ahlfeld T; Lode A; Dawson JI; Gelinsky M; Oreffo ROC Biofabrication; 2020 May; 12(3):035010. PubMed ID: 32259804 [TBL] [Abstract][Full Text] [Related]
8. 3D printed microchannel networks to direct vascularisation during endochondral bone repair. Daly AC; Pitacco P; Nulty J; Cunniffe GM; Kelly DJ Biomaterials; 2018 Apr; 162():34-46. PubMed ID: 29432987 [TBL] [Abstract][Full Text] [Related]
9. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Qi D; Wu S; Kuss MA; Shi W; Chung S; Deegan PT; Kamenskiy A; He Y; Duan B Acta Biomater; 2018 Jul; 74():131-142. PubMed ID: 29842971 [TBL] [Abstract][Full Text] [Related]
10. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
11. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. Gonzalez-Fernandez T; Rathan S; Hobbs C; Pitacco P; Freeman FE; Cunniffe GM; Dunne NJ; McCarthy HO; Nicolosi V; O'Brien FJ; Kelly DJ J Control Release; 2019 May; 301():13-27. PubMed ID: 30853527 [TBL] [Abstract][Full Text] [Related]
12. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
13. Synchronous 3D Bioprinting of Large-Scale Cell-Laden Constructs with Nutrient Networks. Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y Adv Healthc Mater; 2020 Aug; 9(15):e1901142. PubMed ID: 31846229 [TBL] [Abstract][Full Text] [Related]
14. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. de Melo BAG; Jodat YA; Cruz EM; Benincasa JC; Shin SR; Porcionatto MA Acta Biomater; 2020 Nov; 117():60-76. PubMed ID: 32949823 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Zhang J; Eyisoylu H; Qin XH; Rubert M; Müller R Acta Biomater; 2021 Feb; 121():637-652. PubMed ID: 33326888 [TBL] [Abstract][Full Text] [Related]
16. In vivo evaluation of bioprinted prevascularized bone tissue. Rukavina P; Koch F; Wehrle M; Tröndle K; Björn Stark G; Koltay P; Zimmermann S; Zengerle R; Lampert F; Strassburg S; Finkenzeller G; Simunovic F Biotechnol Bioeng; 2020 Dec; 117(12):3902-3911. PubMed ID: 32749669 [TBL] [Abstract][Full Text] [Related]
18. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
20. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Critchley S; Sheehy EJ; Cunniffe G; Diaz-Payno P; Carroll SF; Jeon O; Alsberg E; Brama PAJ; Kelly DJ Acta Biomater; 2020 Sep; 113():130-143. PubMed ID: 32505800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]