BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33706107)

  • 1. Enhancing the binding of the β-sheet breaker peptide LPFFD to the amyloid-β fibrils by aromatic modifications: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    Comput Biol Chem; 2021 Jun; 92():107471. PubMed ID: 33706107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of the mechanism for LPFFD inhibiting the formation of beta-sheet conformation of A beta(1-42) in water.
    Yang C; Zhu X; Li J; Shi R
    J Mol Model; 2010 Apr; 16(4):813-21. PubMed ID: 20049499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of the beta-sheet-breaker peptide LPFFD on oriented network of amyloid β25-35 fibrils.
    Murvai U; Soós K; Penke B; Kellermayer MS
    J Mol Recognit; 2011; 24(3):453-60. PubMed ID: 21504023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Destabilization of the Alzheimer's amyloid-β peptide by a proline-rich β-sheet breaker peptide: a molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Model; 2021 Nov; 27(12):356. PubMed ID: 34796404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design and evaluation of β-sheet breaker peptides for destabilizing Alzheimer's amyloid-β
    Shuaib S; Narang SS; Goyal D; Goyal B
    J Cell Biochem; 2019 Oct; 120(10):17935-17950. PubMed ID: 31162715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of aggregation of amyloid peptides by beta-sheet breaker peptides and their binding affinity.
    Viet MH; Ngo ST; Lam NS; Li MS
    J Phys Chem B; 2011 Jun; 115(22):7433-46. PubMed ID: 21563780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of Aβ fibril interactions with β-sheet breaker peptides.
    Bruce NJ; Chen D; Dastidar SG; Marks GE; Schein CH; Bryce RA
    Peptides; 2010 Nov; 31(11):2100-8. PubMed ID: 20691234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyproline chains destabilize the Alzheimer's amyloid-β protofibrils: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Graph Model; 2019 Dec; 93():107456. PubMed ID: 31581064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational and experimental studies on β-sheet breakers targeting Aβ1-40 fibrils.
    Minicozzi V; Chiaraluce R; Consalvi V; Giordano C; Narcisi C; Punzi P; Rossi GC; Morante S
    J Biol Chem; 2014 Apr; 289(16):11242-11252. PubMed ID: 24584938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-sheet breakers with consecutive phenylalanines: Insights into mechanism of dissolution of β-amyloid fibrils.
    Jarmuła A; Ludwiczak J; Stępkowski D
    Proteins; 2021 Jul; 89(7):762-780. PubMed ID: 33550630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The generic amyloid formation inhibition effect of a designed small aromatic β-breaking peptide.
    Frydman-Marom A; Shaltiel-Karyo R; Moshe S; Gazit E
    Amyloid; 2011 Sep; 18(3):119-27. PubMed ID: 21651439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gd-nanoparticles functionalization with specific peptides for ß-amyloid plaques targeting.
    Plissonneau M; Pansieri J; Heinrich-Balard L; Morfin JF; Stransky-Heilkron N; Rivory P; Mowat P; Dumoulin M; Cohen R; Allémann É; Tόth É; Saraiva MJ; Louis C; Tillement O; Forge V; Lux F; Marquette C
    J Nanobiotechnology; 2016 Jul; 14(1):60. PubMed ID: 27455834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction
    Bakou M; Hille K; Kracklauer M; Spanopoulou A; Frost CV; Malideli E; Yan LM; Caporale A; Zacharias M; Kapurniotu A
    J Biol Chem; 2017 Sep; 292(35):14587-14602. PubMed ID: 28684415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying the Template for Oligomer to Fibril Conversion for Amyloid-β (1-42) Oligomers using Hamiltonian Replica Exchange Molecular Dynamics.
    Saha D; Jana B
    Chemphyschem; 2022 Dec; 23(24):e202200393. PubMed ID: 36052514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destabilization of the Alzheimer's amyloid-β protofibrils by THC: A molecular dynamics simulation study.
    Kanchi PK; Dasmahapatra AK
    J Mol Graph Model; 2021 Jun; 105():107889. PubMed ID: 33725642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of β-sheet breaker peptides on metal associated Amyloid-β peptide aggregation process.
    Stellato F; Fusco Z; Chiaraluce R; Consalvi V; Dinarelli S; Placidi E; Petrosino M; Rossi GC; Minicozzi V; Morante S
    Biophys Chem; 2017 Oct; 229():110-114. PubMed ID: 28527974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers.
    Jarmuła A; Zubalska M; Stępkowski D
    Int J Mol Sci; 2022 May; 23(9):. PubMed ID: 35563639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of phenolic OH groups of flavonoid compounds with H-bond formation ability to suppress amyloid mature fibrils by destabilizing β-sheet conformation of monomeric Aβ17-42.
    Andarzi Gargari S; Barzegar A; Tarinejad A
    PLoS One; 2018; 13(6):e0199541. PubMed ID: 29953467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational screening of nanoparticles coupling to Aβ40 peptides and fibrils.
    Sen S; Vuković L; Král P
    Sci Rep; 2019 Nov; 9(1):17804. PubMed ID: 31780663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of fibril formation by a beta-sheet breaker peptide ligand: an electrochemical approach.
    Veloso AJ; Kerman K
    Bioelectrochemistry; 2012 Apr; 84():49-52. PubMed ID: 21967982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.