BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33706179)

  • 1. Neurotoxicity of chlorpyrifos and chlorpyrifos-oxon to Daphnia magna.
    Maggio SA; Janney PK; Jenkins JJ
    Chemosphere; 2021 Aug; 276():130120. PubMed ID: 33706179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of pulse frequency and interval on the toxicity of chlorpyrifos to Daphnia magna.
    Naddy RB; Klaine SJ
    Chemosphere; 2001 Nov; 45(4-5):497-506. PubMed ID: 11680745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinesterase inhibition and toxicokinetics in immature and adult rats after acute or repeated exposures to chlorpyrifos or chlorpyrifos-oxon.
    Marty MS; Andrus AK; Bell MP; Passage JK; Perala AW; Brzak KA; Bartels MJ; Beck MJ; Juberg DR
    Regul Toxicol Pharmacol; 2012 Jul; 63(2):209-24. PubMed ID: 22504667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic functions of acetylcholinesterase splice variants in the developmental neurotoxicity of organophosphates: chlorpyrifos, chlorpyrifos oxon, and diazinon.
    Jameson RR; Seidler FJ; Slotkin TA
    Environ Health Perspect; 2007 Jan; 115(1):65-70. PubMed ID: 17366821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of computational toxicology tools to predict
    Silva M; Kwok RK
    Curr Res Toxicol; 2022; 3():100064. PubMed ID: 35243363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi- and Trans-Generational Effects on Daphnia Magna of Chlorpyrifos Exposures.
    Maggio SA; Jenkins JJ
    Environ Toxicol Chem; 2022 Apr; 41(4):1054-1065. PubMed ID: 34964987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking sub-individual and supra-individual effects in Daphnia magna exposed to sub-lethal concentration of chlorpyrifos.
    Ferrario C; Parolini M; De Felice B; Villa S; Finizio A
    Environ Pollut; 2018 Apr; 235():411-418. PubMed ID: 29310084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos.
    Mortensen SR; Chanda SM; Hooper MJ; Padilla S
    J Biochem Toxicol; 1996; 11(6):279-87. PubMed ID: 9265078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lethal and sublethal responses in the fish, Odontesthes bonariensis, exposed to chlorpyrifos alone or under mixtures with endosulfán and lambda-cyhalothrin.
    López Aca V; Gonzalez PV; Carriquiriborde P
    Ecotoxicology; 2018 Sep; 27(7):968-979. PubMed ID: 29744622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of biochemical mechanisms of tolerance to chlorpyrifos in ancient and contemporary Daphnia pulicaria genotypes.
    Simpson AM; Jeyasingh PD; Belden JB
    Aquat Toxicol; 2017 Dec; 193():122-127. PubMed ID: 29059598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of chlorpyrifos on the transcription of CYP3A cDNA, activity of acetylcholinesterase, and oxidative stress response of goldfish (Carassius auratus).
    Ma J; Liu Y; Niu D; Li X
    Environ Toxicol; 2015 Apr; 30(4):422-9. PubMed ID: 24190793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncholinesterase mechanisms of chlorpyrifos neurotoxicity: altered phosphorylation of Ca2+/cAMP response element binding protein in cultured neurons.
    Schuh RA; Lein PJ; Beckles RA; Jett DA
    Toxicol Appl Pharmacol; 2002 Jul; 182(2):176-85. PubMed ID: 12140181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior.
    Yang D; Lauridsen H; Buels K; Chi LH; La Du J; Bruun DA; Olson JR; Tanguay RL; Lein PJ
    Toxicol Sci; 2011 May; 121(1):146-59. PubMed ID: 21346248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon.
    Cole TB; Fisher JC; Burbacher TM; Costa LG; Furlong CE
    Neurotoxicol Teratol; 2012; 34(3):311-22. PubMed ID: 22425525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organophosphate insecticides disturb neuronal network development and function via non-AChE mediated mechanisms.
    van Melis LVJ; Heusinkveld HJ; Langendoen C; Peters A; Westerink RHS
    Neurotoxicology; 2023 Jan; 94():35-45. PubMed ID: 36347328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinesterase inhibition and alterations of hepatic metabolism by oral acute and repeated chlorpyrifos administration to mice.
    Cometa MF; Buratti FM; Fortuna S; Lorenzini P; Volpe MT; Parisi L; Testai E; Meneguz A
    Toxicology; 2007 May; 234(1-2):90-102. PubMed ID: 17382447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary biological and computational approaches identify distinct mechanisms of chlorpyrifos versus chlorpyrifos-oxon-induced dopaminergic neurotoxicity.
    Sammi SR; Syeda T; Conrow KD; Leung MCK; Cannon JR
    Toxicol Sci; 2023 Jan; 191(1):163-178. PubMed ID: 36269219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlorpyrifos exerts opposing effects on axonal and dendritic growth in primary neuronal cultures.
    Howard AS; Bucelli R; Jett DA; Bruun D; Yang D; Lein PJ
    Toxicol Appl Pharmacol; 2005 Sep; 207(2):112-24. PubMed ID: 16102564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorpyrifos and chlorpyrifos-oxon inhibit axonal growth by interfering with the morphogenic activity of acetylcholinesterase.
    Yang D; Howard A; Bruun D; Ajua-Alemanj M; Pickart C; Lein PJ
    Toxicol Appl Pharmacol; 2008 Apr; 228(1):32-41. PubMed ID: 18076960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An age-dependent physiologically based pharmacokinetic/pharmacodynamic model for the organophosphorus insecticide chlorpyrifos in the preweanling rat.
    Timchalk C; Kousba AA; Poet TS
    Toxicol Sci; 2007 Aug; 98(2):348-65. PubMed ID: 17504771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.