BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 33706215)

  • 1. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies.
    Liu C; Wang W; Yang B; Xiao K; Zhao H
    Water Res; 2021 May; 195():116976. PubMed ID: 33706215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does chlorination of seawater reverse osmosis membranes control biofouling?
    Khan MT; Hong PY; Nada N; Croue JP
    Water Res; 2015 Jul; 78():84-97. PubMed ID: 25917390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling of end-of-life reverse osmosis membranes for membrane biofilms reactors (MBfRs). Effect of chlorination on the membrane surface and gas permeability.
    Morón-López J; Nieto-Reyes L; Aguado S; El-Shehawy R; Molina S
    Chemosphere; 2019 Sep; 231():103-112. PubMed ID: 31128344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorine resistance property improvement of polyamide reverse osmosis membranes through cross-linking degree increment.
    Gholami S; Rezvani A; Vatanpour V; Khoshravesh SH; Llorens J; Engel E; Castaño O; Cortina JL
    Sci Total Environ; 2023 Sep; 889():164283. PubMed ID: 37209732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Surface Roughness Necessarily Increase the Fouling Propensity of Polyamide Reverse Osmosis Membranes by Humic Acid?
    Gan Q; Wu C; Long L; Peng LE; Yang Z; Guo H; Tang CY
    Environ Sci Technol; 2023 Feb; 57(6):2548-2556. PubMed ID: 36719958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling.
    Guan YF; Boo C; Lu X; Zhou X; Yu HQ; Elimelech M
    Water Res; 2020 Oct; 185():116203. PubMed ID: 32731075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties.
    Suzuki T; Tanaka R; Tahara M; Isamu Y; Niinae M; Lin L; Wang J; Luh J; Coronell O
    Water Res; 2016 Sep; 100():326-336. PubMed ID: 27214345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of chlorine disinfection on the membrane fouling potential of bacterial strains isolated from fouled reverse osmosis membranes.
    Wang YH; Wu YH; Yu T; Zhao XH; Tong X; Bai Y; Huo ZY; Hu HY
    Sci Total Environ; 2019 Nov; 693():133579. PubMed ID: 31376757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.
    Ray JR; Tadepalli S; Nergiz SZ; Liu KK; You L; Tang Y; Singamaneni S; Jun YS
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11117-26. PubMed ID: 25941970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Grafting of Reverse Osmosis Membrane with Chlorhexidine Using Biopolymer Alginate Dialdehyde as a Facile Green Platform for In Situ Biofouling Control.
    Khan R; Wang H; Li Y; Yu S; Khan MK; Xiao K; Huang X
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37515-37526. PubMed ID: 32701290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis.
    Warsinger DM; Tow EW; Maswadeh LA; Connors GB; Swaminathan J; Lienhard V JH
    Water Res; 2018 Jun; 137():384-394. PubMed ID: 29573825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of antifouling reverse osmosis membranes for water treatment: A review.
    Kang GD; Cao YM
    Water Res; 2012 Mar; 46(3):584-600. PubMed ID: 22154112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osmotic cleaning of typical inorganic and organic foulants on reverse osmosis membrane for textile printing and dyeing wastewater treatment.
    Hu Z; Guan D; Sun Z; Zhang Z; Shan Y; Wu Y; Gong C; Ren X
    Chemosphere; 2023 Sep; 336():139162. PubMed ID: 37290520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward Enhancing the Chlorine Resistance of Reverse Osmosis Membranes: An Effective Strategy via an End-capping Technology.
    Yao Y; Zhang W; Du Y; Li M; Wang L; Zhang X
    Environ Sci Technol; 2019 Feb; 53(3):1296-1304. PubMed ID: 30624065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite.
    Inukai S; Cruz-Silva R; Ortiz-Medina J; Morelos-Gomez A; Takeuchi K; Hayashi T; Tanioka A; Araki T; Tejima S; Noguchi T; Terrones M; Endo M
    Sci Rep; 2015 Sep; 5():13562. PubMed ID: 26333385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of seawater reverse osmosis fouling and its relationship to pretreatment type.
    Kumar M; Adham SS; Pearce WR
    Environ Sci Technol; 2006 Mar; 40(6):2037-44. PubMed ID: 16570633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diminished swelling of cross-linked aromatic oligoamide surfaces revealing a new fouling mechanism of reverse-osmosis membranes.
    Ying W; Kumar R; Herzberg M; Kasher R
    Environ Sci Technol; 2015 Jun; 49(11):6815-22. PubMed ID: 25920584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review.
    Zhao DL; Japip S; Zhang Y; Weber M; Maletzko C; Chung TS
    Water Res; 2020 Apr; 173():115557. PubMed ID: 32028249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.