These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 33706254)

  • 1. Green separation of lanthanum, cerium and nickel from waste nickel metal hydride battery.
    Vargas SJR; Schaeffer N; Souza JC; da Silva LHM; Hespanhol MC
    Waste Manag; 2021 Apr; 125():154-162. PubMed ID: 33706254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of spent nickel-metal hydride batteries and a preliminary economic evaluation of the recovery processes.
    Lin SL; Huang KL; Wang IC; Chou IC; Kuo YM; Hung CH; Lin C
    J Air Waste Manag Assoc; 2016 Mar; 66(3):296-306. PubMed ID: 26651506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.
    Sobianowska-Turek A
    Waste Manag; 2018 Jul; 77():213-219. PubMed ID: 29655922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clean process for the recovery of rare earth and transition metals from NiMH battery based on primary amine and lauric acid.
    Zhang S; Ni S; Zeng Z; Yu G; Huang B; Sun X
    J Environ Manage; 2024 Feb; 351():119788. PubMed ID: 38100857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valorization of waste NiMH battery through recovery of critical rare earth metal: A simple recycling process for the circular economy.
    Ahn NK; Shim HW; Kim DW; Swain B
    Waste Manag; 2020 Mar; 104():254-261. PubMed ID: 31991266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective synthesis of CuNi alloys using waste PCB and NiMH battery.
    Farzana R; Hassan K; Wang W; Sahajwalla V
    J Environ Manage; 2019 Mar; 234():145-153. PubMed ID: 30616186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A HNO
    Schaeffer N; Vargas SJR; Passos H; Brandão P; Nogueira HIS; Svecova L; Papaiconomou ; Coutinho JAP
    ChemSusChem; 2021 Jul; 14(14):3018-3026. PubMed ID: 34087058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2016 May; 51():196-203. PubMed ID: 26746588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries.
    Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S
    Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Recovery of Rare Earth Elements and Zinc from Spent Ni-Metal Hydride Batteries: Statistical Studies.
    Weshahy AR; Gouda AA; Atia BM; Sakr AK; Al-Otaibi JS; Almuqrin A; Hanfi MY; Sayyed MI; El Sheikh R; Radwan HA; Hassen FS; Gado MA
    Nanomaterials (Basel); 2022 Jul; 12(13):. PubMed ID: 35808142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Farming for battery metals.
    Nkrumah PN; Echevarria G; Erskine PD; van der Ent A
    Sci Total Environ; 2022 Jun; 827():154092. PubMed ID: 35219682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective recovery of cobalt from the secondary streams after NiMH batteries processing using Cyanex 301.
    Petranikova M; Ebin B; Tunsu C
    Waste Manag; 2019 Jan; 83():194-201. PubMed ID: 30514466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REE(III) recovery from spent NiMH batteries as REE double sulfates and their simultaneous hydrolysis and wet-oxidation.
    Porvali A; Agarwal V; Lundström M
    Waste Manag; 2020 Apr; 107():66-73. PubMed ID: 32278217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lanthanide-alkali double sulfate precipitation from strong sulfuric acid NiMH battery waste leachate.
    Porvali A; Wilson BP; Lundström M
    Waste Manag; 2018 Jan; 71():381-389. PubMed ID: 29110941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Quantification of Rare Earth Elements Concentrations in Urine of Workers Manufacturing Cerium, Lanthanum Oxide Ultrafine and Nanoparticles by a Developed and Validated ICP-MS.
    Li Y; Yu H; Zheng S; Miao Y; Yin S; Li P; Bian Y
    Int J Environ Res Public Health; 2016 Mar; 13(3):. PubMed ID: 27011194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of industrial valuable metals from household battery waste.
    Ebin B; Petranikova M; Steenari BM; Ekberg C
    Waste Manag Res; 2019 Feb; 37(2):168-175. PubMed ID: 30632933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare earth element recycling from waste nickel-metal hydride batteries.
    Yang X; Zhang J; Fang X
    J Hazard Mater; 2014 Aug; 279():384-8. PubMed ID: 25089667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
    Tanong K; Coudert L; Mercier G; Blais JF
    J Environ Manage; 2016 Oct; 181():95-107. PubMed ID: 27318877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid.
    Rout A; Binnemans K
    Phys Chem Chem Phys; 2016 Jun; 18(23):16039-45. PubMed ID: 27243450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.