These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33706505)

  • 1. Influence of the Reaction Pathway on the Defect Formation in a Cu
    Yoo H; Jang JS; Shin SW; Lee J; Kim J; Kim DM; Lee IJ; Lee BH; Park J; Kim JH
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13425-13433. PubMed ID: 33706505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.
    Yang Y; Wang G; Zhao W; Tian Q; Huang L; Pan D
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):460-4. PubMed ID: 25494493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Cu2ZnSnSe4 Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency.
    Li J; Wang H; Wu L; Chen C; Zhou Z; Liu F; Sun Y; Han J; Zhang Y
    ACS Appl Mater Interfaces; 2016 Apr; 8(16):10283-92. PubMed ID: 27058738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.
    Zhang Z; Yao L; Zhang Y; Ao J; Bi J; Gao S; Gao Q; Jeng MJ; Sun G; Zhou Z; He Q; Sun Y
    Adv Sci (Weinh); 2018 Feb; 5(2):1700645. PubMed ID: 29610727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KCN Chemical Etch for Interface Engineering in Cu2ZnSnSe4 Solar Cells.
    Buffière M; Brammertz G; Sahayaraj S; Batuk M; Khelifi S; Mangin D; El Mel AA; Arzel L; Hadermann J; Meuris M; Poortmans J
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14690-8. PubMed ID: 26039042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu
    Lai FI; Yang JF; Chen WC; Kuo SY
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40224-40234. PubMed ID: 29072439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; He Q; Zhou Z; Sun G; Sun Y; Chang LB; Chen JW
    Nanoscale Res Lett; 2014; 9(1):678. PubMed ID: 25593559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Sn Content in a CuSnZn Metal Precursor on Formation of MoSe₂ Film during Selenization in Se+SnSe Vapor.
    Yao L; Ao J; Jeng MJ; Bi J; Gao S; Sun G; He Q; Zhou Z; Sun Y; Chang LB
    Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films.
    Just J; Sutter-Fella CM; Lützenkirchen-Hecht D; Frahm R; Schorr S; Unold T
    Phys Chem Chem Phys; 2016 Jun; 18(23):15988-94. PubMed ID: 27240735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Characterization of Cu
    Sahu M; Minnam Reddy VR; Patro B; Park C; Kim WK; Sharma P
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.
    Jeon JO; Lee KD; Seul Oh L; Seo SW; Lee DK; Kim H; Jeong JH; Ko MJ; Kim B; Son HJ; Kim JY
    ChemSusChem; 2014 Apr; 7(4):1073-7. PubMed ID: 24692285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers.
    Chen S; Walsh A; Gong XG; Wei SH
    Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Characterization of Thin-Film Solar Cells with Ag/C
    Chang TW; Tseng CC; Chen DW; Wu G; Yang CL; Chen LC
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.
    Steirer KX; Garris RL; Li JV; Dzara MJ; Ndione PF; Ramanathan K; Repins I; Teeter G; Perkins CL
    Phys Chem Chem Phys; 2015 Jun; 17(23):15355-64. PubMed ID: 26000570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect Control for 12.5% Efficiency Cu
    Li J; Huang Y; Huang J; Liang G; Zhang Y; Rey G; Guo F; Su Z; Zhu H; Cai L; Sun K; Sun Y; Liu F; Chen S; Hao X; Mai Y; Green MA
    Adv Mater; 2020 Dec; 32(52):e2005268. PubMed ID: 33185295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium-assisted passivation of grain boundaries and defects in Cu
    Kim J; Kim GY; Nguyen TTT; Yoon S; Kim YK; Lee SY; Kim M; Cho DH; Chung YD; Lee JH; Seong MJ; Jo W
    Phys Chem Chem Phys; 2020 Apr; 22(14):7597-7605. PubMed ID: 32226986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires.
    Li ZQ; Shi JH; Liu QQ; Chen YW; Sun Z; Yang Z; Huang SM
    Nanotechnology; 2011 Jul; 22(26):265615. PubMed ID: 21586809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into High-Efficiency Ag-Alloyed CZTSSe Solar Cells Fabricated through Aqueous Spray Deposition.
    Enkhbat T; Enkhbayar E; Sharif MH; Mina MS; Song S; Kim J
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45426-45434. PubMed ID: 34528783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Promotes the Formation of MoSe
    Wu J; Zhang S; Guo H; Wu X; Li H; Liu Y; Shen Z; Wu L; Wang W; Zhang Y
    J Phys Chem Lett; 2021 May; 12(18):4447-4452. PubMed ID: 33955771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Electrochemical Treatment Evoked Superior Grain Growth for Green Electrodeposition-Processed Flexible CZTSe Solar Cells.
    Liu J; Shen Q; Liu Z; Gao X; Zhang Z; Liu X; Cheng K; Du Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31852-31860. PubMed ID: 34197079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.