These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33706511)

  • 21. Degradation of Organic Contaminants in the Fe(II)/Peroxymonosulfate Process under Acidic Conditions: The Overlooked Rapid Oxidation Stage.
    Dong H; Xu Q; Lian L; Li Y; Wang S; Li C; Guan X
    Environ Sci Technol; 2021 Nov; 55(22):15390-15399. PubMed ID: 34730346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing agents enhanced Fenton-like oxidation (Fe(III)/Peroxydisulfate): Substrate specific reactivity of reactive oxygen species.
    Meng S; Zhou P; Sun Y; Zhang P; Zhou C; Xiong Z; Zhang H; Liang J; Lai B
    Water Res; 2022 Jun; 218():118412. PubMed ID: 35453031
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fe
    Liang S; Zhu L; Hua J; Duan W; Yang PT; Wang SL; Wei C; Liu C; Feng C
    Environ Sci Technol; 2020 May; 54(10):6406-6414. PubMed ID: 32157878
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Singlet-Oxygen Generation in Alkaline Periodate Solution.
    Bokare AD; Choi W
    Environ Sci Technol; 2015 Dec; 49(24):14392-400. PubMed ID: 26594871
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species.
    Liu B; Guo W; Wang H; Zheng S; Si Q; Zhao Q; Luo H; Ren N
    J Hazard Mater; 2021 Aug; 416():125679. PubMed ID: 33823482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design?
    Ansari A; Rajaraman G
    Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly selective oxidation of organic contaminants in the Ru
    Zong Y; Zhang H; Zhang X; Shao Y; Zeng Y; Ji W; Xu L; Wu D
    Chemosphere; 2021 Dec; 285():131544. PubMed ID: 34710964
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(VI) towards oxidation of organic contaminants.
    Luo M; Zhou H; Zhou P; Lai L; Liu W; Ao Z; Yao G; Zhang H; Lai B
    Water Res; 2021 Sep; 203():117548. PubMed ID: 34412019
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cooperation of multiple active species generated in hydrogen peroxide activation by iron porphyrin for phenolic pollutants degradation.
    Yang X; Hu J; Wu L; Hou H; Liang S; Yang J
    Environ Pollut; 2022 Nov; 313():120097. PubMed ID: 36089136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fenton chemistry at aqueous interfaces.
    Enami S; Sakamoto Y; Colussi AJ
    Proc Natl Acad Sci U S A; 2014 Jan; 111(2):623-8. PubMed ID: 24379389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydroxylamine enhanced Fe(II)-activated peracetic acid process for diclofenac degradation: Efficiency, mechanism and effects of various parameters.
    Lin J; Zou J; Cai H; Huang Y; Li J; Xiao J; Yuan B; Ma J
    Water Res; 2021 Dec; 207():117796. PubMed ID: 34736001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revisiting the Oxidizing Capacity of the Periodate-H
    Kim Y; Lee H; Oh H; Haider Z; Choi J; Shin YU; Kim HI; Lee J
    Environ Sci Technol; 2022 May; 56(9):5763-5774. PubMed ID: 35442651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications.
    Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z
    Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.