These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33706527)

  • 1. Bacillus subtilis extracellular polymeric substances conditioning layers inhibit Escherichia coli adhesion to silicon surfaces: A potential candidate for interfacial antifouling additives.
    Wu S; Hou W; Suo X; Guo X; Li H
    Biointerphases; 2021 Jan; 16(1):011003. PubMed ID: 33706527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of extracellular polymeric substances (EPS) properties of P. aeruginosa and B. subtilis and their role in bacterial adhesion.
    Harimawan A; Ting YP
    Colloids Surf B Biointerfaces; 2016 Oct; 146():459-67. PubMed ID: 27395039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antifouling nanoplatform for controlled attachment of
    Tavangar A; Premnath P; Tan B; Venkatakrishnan K
    Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38772388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing the inhibitory effect of metabolic uncoupler on bacterial initial attachment and biofilm development and the underlying mechanism.
    Feng X; Wu Q; Che L; Ren N
    Environ Res; 2020 Jun; 185():109390. PubMed ID: 32251913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).
    Zhao W; Yang S; Huang Q; Cai P
    Colloids Surf B Biointerfaces; 2015 Apr; 128():600-607. PubMed ID: 25805151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Dispersal of Surface Layer Biofilm Induced by Nanosized TiO
    Zhang P; Guo JS; Yan P; Chen YP; Wang W; Dai YZ; Fang F; Wang GX; Shen Y
    Appl Environ Microbiol; 2018 May; 84(9):. PubMed ID: 29500260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid soluble extracellular matrix confers structural stability to marine Bacillus haynesii pellicle biofilms.
    K R; Y V N; V P V
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111160. PubMed ID: 32526635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces.
    Liu J; Li W; Zhu X; Zhao H; Lu Y; Zhang C; Lu Z
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4565-4574. PubMed ID: 31011774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antimicrobial peptide AMPNT-6 from Bacillus subtilis inhibits biofilm formation by Shewanella putrefaciens and disrupts its preformed biofilms on both abiotic and shrimp shell surfaces.
    Deng Q; Pu Y; Sun L; Wang Y; Liu Y; Wang R; Liao J; Xu D; Liu Y; Ye R; Fang Z; Gooneratne R
    Food Res Int; 2017 Dec; 102():8-13. PubMed ID: 29196015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmission of Monospecies and Dual-Species Biofilms from Smooth to Nanopillared Surfaces.
    Gusnaniar ; Hizal F; Choi CH; Sjollema J; Nuryastuti T; Rustema-Abbing M; Rozenbaum RT; van der Mei HC; Busscher HJ; Wessel SW
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29802194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro- and Nanopatterned Silk Substrates for Antifouling Applications.
    Tullii G; Donini S; Bossio C; Lodola F; Pasini M; Parisini E; Galeotti F; Antognazza MR
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5437-5446. PubMed ID: 31917532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration.
    Yu C; Li X; Zhang N; Wen D; Liu C; Li Q
    Water Res; 2016 Apr; 92():173-9. PubMed ID: 26854605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface indentation and fluid intake generated by the polymer matrix of Bacillus subtilis biofilms.
    Zhang W; Dai W; Tsai SM; Zehnder SM; Sarntinoranont M; Angelini TE
    Soft Matter; 2015 May; 11(18):3612-7. PubMed ID: 25797701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing extracellular reduction mechanisms of Bacillus subtilis and Escherichia coli with nitroaromatic compounds.
    Zhou X; Kang F; Qu X; Fu H; Liu J; Alvarez PJ; Zhu D
    Sci Total Environ; 2020 Jul; 724():138291. PubMed ID: 32408461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential antitumor and anti-inflammatory activities of an extracellular polymeric substance (EPS) from Bacillus subtilis isolated from a housefly.
    Zhang L; Yi H
    Sci Rep; 2022 Jan; 12(1):1383. PubMed ID: 35082324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Bacillus cereus biofilm formation: an investigation of the physicochemical characteristics of cell surfaces and extracellular proteins.
    Karunakaran E; Biggs CA
    Appl Microbiol Biotechnol; 2011 Feb; 89(4):1161-75. PubMed ID: 20936277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of hydrophilic colanic acid on bacterial attachment to microfiltration membranes and subsequent membrane biofouling.
    Yoshida K; Tashiro Y; May T; Okabe S
    Water Res; 2015 Jun; 76():33-42. PubMed ID: 25776918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Extracellular Polymeric Substances in Microbial Reduction of Arsenate to Arsenite by
    Zhou X; Kang F; Qu X; Fu H; Alvarez PJJ; Tao S; Zhu D
    Environ Sci Technol; 2020 May; 54(10):6185-6193. PubMed ID: 32315521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.
    Faille C; Jullien C; Fontaine F; Bellon-Fontaine MN; Slomianny C; Benezech T
    Can J Microbiol; 2002 Aug; 48(8):728-38. PubMed ID: 12381029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Tracking of Surfactant-Tuned Bacterial Adhesion: a Single-Cell Imaging Study.
    Lv ZT; Qian C; Liu YN; Lv YH; Liu XW
    Appl Environ Microbiol; 2022 Dec; 88(23):e0162622. PubMed ID: 36374031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.