These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33706527)

  • 41. Microbe-surface interactions in biofouling and biocorrosion processes.
    Beech IB; Sunner JA; Hiraoka K
    Int Microbiol; 2005 Sep; 8(3):157-68. PubMed ID: 16200494
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In-situ detection based on the biofilm hydrophilicity for environmental biofilm formation.
    Tanaka N; Kogo T; Hirai N; Ogawa A; Kanematsu H; Takahara J; Awazu A; Fujita N; Haruzono Y; Ichida S; Tanaka Y
    Sci Rep; 2019 May; 9(1):8070. PubMed ID: 31147580
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Prevention of Bacterial Colonization on Catheters by a One-Step Coating Process Involving an Antibiofouling Polymer in Water.
    Keum H; Kim JY; Yu B; Yu SJ; Kim J; Jeon H; Lee DY; Im SG; Jon S
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19736-19745. PubMed ID: 28569502
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis.
    Yu Y; Yan F; He Y; Qin Y; Chen Y; Chai Y; Guo JH
    Microbiology (Reading); 2018 May; 164(5):848-862. PubMed ID: 29629859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.
    Gomes LC; Silva LN; Simões M; Melo LF; Mergulhão FJ
    J Biomed Mater Res A; 2015 Apr; 103(4):1414-23. PubMed ID: 25044887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using a multi-faceted approach to determine the changes in bacterial cell surface properties influenced by a biofilm lifestyle.
    Mukherjee J; Karunakaran E; Biggs CA
    Biofouling; 2012; 28(1):1-14. PubMed ID: 22150164
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications.
    Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG
    J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Variable pH and subsequent change in pCO
    Rath S; Palit K; Das S
    Environ Res; 2022 Nov; 214(Pt 4):114128. PubMed ID: 36007573
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ortho-Substituted α-Phenyl Mannoside Derivatives Promoted Early-Stage Adhesion and Biofilm Formation of
    Zhu Z; Chen Y; Li S; Lin H; Qin G; Cai C
    ACS Appl Mater Interfaces; 2020 May; 12(19):21300-21310. PubMed ID: 32107915
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Copper Tannic Acid-Coordinated Metal-Organic Nanosheets for Synergistic Antimicrobial and Antifouling Coatings.
    Li J; Li J; Wei J; Zhu X; Qiu S; Zhao H
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10446-10456. PubMed ID: 33617228
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stress-localized durable anti-biofouling surfaces.
    Eslami B; Irajizad P; Jafari P; Nazari M; Masoudi A; Kashyap V; Stafslien S; Ghasemi H
    Soft Matter; 2019 Jul; 15(29):6014-6026. PubMed ID: 31309202
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review - Bacteria and their extracellular polymeric substances causing biofouling on seawater reverse osmosis desalination membranes.
    Nagaraj V; Skillman L; Li D; Ho G
    J Environ Manage; 2018 Oct; 223():586-599. PubMed ID: 29975885
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces.
    Patir A; Hwang GB; Lourenco C; Nair SP; Carmalt CJ; Parkin IP
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5478-5485. PubMed ID: 33492929
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling.
    Jiang JK; Mu Y; Yu HQ
    J Colloid Interface Sci; 2019 Feb; 535():318-324. PubMed ID: 30316118
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decisive Role of Polymer-Bovine Serum Albumin Interactions in Biofilm Substrates on "Philicity" and Extracellular Polymeric Substances Composition.
    Sinha SD; Choudhuri M; Basu T; Gupta D; Datta A
    Langmuir; 2022 Feb; 38(6):1966-1976. PubMed ID: 35119288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation on adhesion of Sulfobacillus thermosulfidooxidans via atomic force microscopy equipped with mineral probes.
    Li Q; Becker T; Zhang R; Xiao T; Sand W
    Colloids Surf B Biointerfaces; 2019 Jan; 173():639-646. PubMed ID: 30368211
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon.
    Zhang R; Neu TR; Blanchard V; Vera M; Sand W
    N Biotechnol; 2019 Jul; 51():21-30. PubMed ID: 30743061
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers.
    Wang C; Hou J; van der Mei HC; Busscher HJ; Ren Y
    mBio; 2019 Sep; 10(5):. PubMed ID: 31506311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A nanomolecular approach to decrease adhesion of biofouling-producing bacteria to graphene-coated material.
    Parra C; Dorta F; Jimenez E; Henríquez R; Ramírez C; Rojas R; Villalobos P
    J Nanobiotechnology; 2015 Nov; 13():82. PubMed ID: 26573588
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discrimination between random and non-random processes in early bacterial colonization on biomaterial surfaces: application of point pattern analysis.
    Siegismund D; Schroeter A; Lüdecke C; Undisz A; Jandt KD; Roth M; Rettenmayr M; Schuster S; Germerodt S
    Biofouling; 2014 Oct; 30(9):1023-33. PubMed ID: 25329612
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.