These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33707000)

  • 21. Brief Stimulus Exposure Fully Remediates Temporal Processing Deficits Induced by Early Hearing Loss.
    Green DB; Mattingly MM; Ye Y; Gay JD; Rosen MJ
    J Neurosci; 2017 Aug; 37(32):7759-7771. PubMed ID: 28706081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Speech-in-noise understanding in older age: The role of inhibitory cortical responses.
    Ross B; Dobri S; Schumann A
    Eur J Neurosci; 2020 Feb; 51(3):891-908. PubMed ID: 31494988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Association between age‑related hearing loss and cognitive decline in C57BL/6J mice.
    Dong Y; Guo CR; Chen D; Chen SM; Peng Y; Song H; Shi JR
    Mol Med Rep; 2018 Aug; 18(2):1726-1732. PubMed ID: 29901198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Language processing of auditory cortex revealed by functional magnetic resonance imaging in presbycusis patients.
    Chen X; Wang M; Deng Y; Liang Y; Li J; Chen S
    Acta Otolaryngol; 2016; 136(2):113-9. PubMed ID: 26503708
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic influences on susceptibility of the auditory system to aging and environmental factors.
    Li HS
    Scand Audiol Suppl; 1992; 36():1-39. PubMed ID: 1488615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theta, beta and gamma rate modulations in the developing auditory system.
    Vanvooren S; Hofmann M; Poelmans H; Ghesquière P; Wouters J
    Hear Res; 2015 Sep; 327():153-62. PubMed ID: 26117409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Processing of broadband stimuli across A1 layers in young and aged rats.
    Hughes LF; Turner JG; Parrish JL; Caspary DM
    Hear Res; 2010 Jun; 264(1-2):79-85. PubMed ID: 19772906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Afferent-efferent connectivity between auditory brainstem and cortex accounts for poorer speech-in-noise comprehension in older adults.
    Bidelman GM; Price CN; Shen D; Arnott SR; Alain C
    Hear Res; 2019 Oct; 382():107795. PubMed ID: 31479953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aging But Not Age-Related Hearing Loss Dominates the Decrease of Parvalbumin Immunoreactivity in the Primary Auditory Cortex of Mice.
    Rogalla MM; Hildebrandt KJ
    eNeuro; 2020; 7(3):. PubMed ID: 32327469
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered cortical spectrotemporal processing with age-related hearing loss.
    Trujillo M; Razak KA
    J Neurophysiol; 2013 Dec; 110(12):2873-86. PubMed ID: 24068755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The miR-34a/Bcl-2 Pathway Contributes to Auditory Cortex Neuron Apoptosis in Age-Related Hearing Loss.
    Huang Q; Ou Y; Xiong H; Yang H; Zhang Z; Chen S; Ye Y; Zheng Y
    Audiol Neurootol; 2017; 22(2):96-103. PubMed ID: 28817812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 40-Hz oscillations underlying perceptual binding in young and older adults.
    Ross B; Fujioka T
    Psychophysiology; 2016 Jul; 53(7):974-90. PubMed ID: 27080577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The impact of hearing aids and age-related hearing loss on auditory plasticity across three months - An electrical neuroimaging study.
    Giroud N; Lemke U; Reich P; Matthes KL; Meyer M
    Hear Res; 2017 Sep; 353():162-175. PubMed ID: 28705608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice.
    Xue B; Meng X; Kao JPY; Kanold PO
    Hear Res; 2023 Mar; 429():108685. PubMed ID: 36701895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-Related Hearing Loss in C57BL/6J Mice Is Associated with Mitophagy Impairment in the Central Auditory System.
    Youn CK; Jun Y; Jo ER; Cho SI
    Int J Mol Sci; 2020 Sep; 21(19):. PubMed ID: 33003463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Decreased auditory GABA+ concentrations in presbycusis demonstrated by edited magnetic resonance spectroscopy.
    Gao F; Wang G; Ma W; Ren F; Li M; Dong Y; Liu C; Liu B; Bai X; Zhao B; Edden RA
    Neuroimage; 2015 Feb; 106():311-6. PubMed ID: 25463460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amplitude modulation coding in awake mice and squirrel monkeys.
    Hoglen NEG; Larimer P; Phillips EAK; Malone BJ; Hasenstaub AR
    J Neurophysiol; 2018 May; 119(5):1753-1766. PubMed ID: 29364073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related changes in the guinea pig auditory cortex: relationship with brainstem changes and comparison with tone-induced hearing loss.
    Gourévitch B; Edeline JM
    Eur J Neurosci; 2011 Dec; 34(12):1953-65. PubMed ID: 22092590
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The functional age of hearing loss in a mouse model of presbycusis. I. Behavioral assessments.
    Prosen CA; Dore DJ; May BJ
    Hear Res; 2003 Sep; 183(1-2):44-56. PubMed ID: 13679137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.