These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33707000)

  • 61. Hearing-impaired listeners show increased audiovisual benefit when listening to speech in noise.
    Puschmann S; Daeglau M; Stropahl M; Mirkovic B; Rosemann S; Thiel CM; Debener S
    Neuroimage; 2019 Aug; 196():261-268. PubMed ID: 30978494
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Dysfunction of specific auditory fibers impacts cortical oscillations, driving an autism phenotype despite near-normal hearing.
    Marchetta P; Dapper K; Hess M; Calis D; Singer W; Wertz J; Fink S; Hage SR; Alam M; Schwabe K; Lukowski R; Bourien J; Puel JL; Jacob MH; Munk MHJ; Land R; Rüttiger L; Knipper M
    FASEB J; 2024 Jan; 38(2):e23411. PubMed ID: 38243766
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Cochlear Synaptopathy: A Primary Factor Affecting Speech Recognition Performance in Presbycusis.
    Chen Z; Zhang Y; Zhang J; Zhou R; Zhong Z; Wei C; Chen J; Liu Y
    Biomed Res Int; 2021; 2021():6667531. PubMed ID: 34409106
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Magnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise.
    Millman RE; Mattys SL; Gouws AD; Prendergast G
    J Neurosci; 2017 Aug; 37(32):7727-7736. PubMed ID: 28694336
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The absence of resting-state high-gamma cross-frequency coupling in patients with tinnitus.
    Ahn MH; Hong SK; Min BK
    Hear Res; 2017 Dec; 356():63-73. PubMed ID: 29097049
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Age-related changes in the temporal processing of acoustical signals in the auditory cortex of rats.
    Bureš Z; Pysanenko K; Syka J
    Hear Res; 2021 Mar; 402():108025. PubMed ID: 32709399
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Developmental Changes in EEG Phenotypes in a Mouse Model of Fragile X Syndrome.
    Wen TH; Lovelace JW; Ethell IM; Binder DK; Razak KA
    Neuroscience; 2019 Feb; 398():126-143. PubMed ID: 30528856
    [TBL] [Abstract][Full Text] [Related]  

  • 68. SIRT1 expression in the cochlea and auditory cortex of a mouse model of age-related hearing loss.
    Xiong H; Dai M; Ou Y; Pang J; Yang H; Huang Q; Chen S; Zhang Z; Xu Y; Cai Y; Liang M; Zhang X; Lai L; Zheng Y
    Exp Gerontol; 2014 Mar; 51():8-14. PubMed ID: 24365660
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex.
    Franowicz MN; Barth DS
    J Neurophysiol; 1995 Jul; 74(1):96-112. PubMed ID: 7472356
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Cortical evoked potentials to an auditory illusion: binaural beats.
    Pratt H; Starr A; Michalewski HJ; Dimitrijevic A; Bleich N; Mittelman N
    Clin Neurophysiol; 2009 Aug; 120(8):1514-24. PubMed ID: 19616993
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of aging on peripheral and central auditory processing in rats.
    Costa M; Lepore F; Prévost F; Guillemot JP
    Eur J Neurosci; 2016 Aug; 44(4):2084-94. PubMed ID: 27306460
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Central presbycusis.
    Welsh LW; Welsh JJ; Healy MP
    Laryngoscope; 1985 Feb; 95(2):128-36. PubMed ID: 3968946
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Subcortical modulation of high-frequency (gamma band) oscillating potentials in auditory cortex.
    Brett B; Barth DS
    J Neurophysiol; 1997 Aug; 78(2):573-81. PubMed ID: 9307095
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Validating γ oscillations and delayed auditory responses as translational biomarkers of autism.
    Gandal MJ; Edgar JC; Ehrlichman RS; Mehta M; Roberts TP; Siegel SJ
    Biol Psychiatry; 2010 Dec; 68(12):1100-6. PubMed ID: 21130222
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differential Plasticity in Auditory and Prefrontal Cortices, and Cognitive-Behavioral Deficits Following Noise-Induced Hearing Loss.
    Wieczerzak KB; Patel SV; MacNeil H; Scott KE; Schormans AL; Hayes SH; Herrmann B; Allman BL
    Neuroscience; 2021 Feb; 455():1-18. PubMed ID: 33246065
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Enhanced speech perception in noise and cortical auditory evoked potentials in professional musicians.
    Meha-Bettison K; Sharma M; Ibrahim RK; Mandikal Vasuki PR
    Int J Audiol; 2018 Jan; 57(1):40-52. PubMed ID: 28971719
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Age-related auditory deficits in temporal processing in F-344 rats.
    Parthasarathy A; Bartlett EL
    Neuroscience; 2011 Sep; 192():619-30. PubMed ID: 21723376
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice.
    Bowen Z; Winkowski DE; Kanold PO
    Sci Rep; 2020 Jul; 10(1):10905. PubMed ID: 32616766
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Temporal selectivity declines in the aging human auditory cortex.
    Erb J; Schmitt LM; Obleser J
    Elife; 2020 Jul; 9():. PubMed ID: 32618270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Diffusion tensor imaging and MR morphometry of the central auditory pathway and auditory cortex in aging.
    Profant O; Škoch A; Balogová Z; Tintěra J; Hlinka J; Syka J
    Neuroscience; 2014 Feb; 260():87-97. PubMed ID: 24333969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.