These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 33707195)

  • 1. Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum.
    Nogueira J; Castelló ME; Lescano C; Caputi ÁA
    J Exp Biol; 2021 May; 224(9):. PubMed ID: 33707195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus).
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3173-96. PubMed ID: 9862915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticity in an electrosensory system. I. General features of a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2483-96. PubMed ID: 8899621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From the intrinsic properties to the functional role of a neuron phenotype: an example from electric fish during signal trade-off.
    Nogueira J; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2380-92. PubMed ID: 23761463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Morphological and electrophysiological properties of a novel in vitro preparation: the electrosensory lateral line lobe brain slice.
    Mathieson WB; Maler L
    J Comp Physiol A; 1988 Aug; 163(4):489-506. PubMed ID: 3184011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiology of electrosensory lateral line lobe neurons in Gnathonemus petersii.
    Sugawara Y; Grant K; Han V; Bell CC
    J Exp Biol; 1999 May; 202(Pt 10):1301-9. PubMed ID: 10210670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
    Pereira AC; Rodríguez-Cattáneo A; Caputi AA
    J Physiol Paris; 2014; 108(2-3):71-83. PubMed ID: 25088503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus encoding and feature extraction by multiple sensory neurons.
    Krahe R; Kreiman G; Gabbiani F; Koch C; Metzner W
    J Neurosci; 2002 Mar; 22(6):2374-82. PubMed ID: 11896176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron.
    Turner RW; Maler L; Deerinck T; Levinson SR; Ellisman MH
    J Neurosci; 1994 Nov; 14(11 Pt 1):6453-71. PubMed ID: 7965050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptive field organization determines pyramidal cell stimulus-encoding capability and spatial stimulus selectivity.
    Bastian J; Chacron MJ; Maler L
    J Neurosci; 2002 Jun; 22(11):4577-90. PubMed ID: 12040065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish
    Rodríguez-Cattaneo A; Aguilera PA; Caputi AA
    J Exp Biol; 2017 May; 220(Pt 9):1663-1673. PubMed ID: 28202586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity in an electrosensory system. III. Contrasting properties of spatially segregated dendritic inputs.
    Bastian J
    J Neurophysiol; 1998 Apr; 79(4):1839-57. PubMed ID: 9535952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABAergic inhibition shapes temporal and spatial response properties of pyramidal cells in the electrosensory lateral line lobe of gymnotiform fish.
    Shumway CA; Maler L
    J Comp Physiol A; 1989 Jan; 164(3):391-407. PubMed ID: 2709342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple model of the electrosensory electromotor loop in Gymnotus omarorum.
    Caputi AA; Waddell JC; Aguilera PA
    Biosystems; 2023 Jan; 223():104800. PubMed ID: 36343760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlating gamma-aminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish.
    Maler L; Mugnaini E
    J Comp Neurol; 1994 Jul; 345(2):224-52. PubMed ID: 7523460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model of gamma frequency burst discharge generated by conditional backpropagation.
    Doiron B; Longtin A; Turner RW; Maler L
    J Neurophysiol; 2001 Oct; 86(4):1523-45. PubMed ID: 11600618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Logarithmic time course of sensory adaptation in electrosensory afferent nerve fibers in a weakly electric fish.
    Xu Z; Payne JR; Nelson ME
    J Neurophysiol; 1996 Sep; 76(3):2020-32. PubMed ID: 8890311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Getting the news in milliseconds: The role of early novelty detection in active electrosensory exploration.
    Caputi AA; Rodríguez-Cattáneo A; Waddell JC; Pereira AC; Aguilera PA
    Biosystems; 2023 Jan; 223():104803. PubMed ID: 36371021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity in an electrosensory system. II. Postsynaptic events associated with a dynamic sensory filter.
    Bastian J
    J Neurophysiol; 1996 Oct; 76(4):2497-507. PubMed ID: 8899622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SK channels provide a novel mechanism for the control of frequency tuning in electrosensory neurons.
    Ellis LD; Mehaffey WH; Harvey-Girard E; Turner RW; Maler L; Dunn RJ
    J Neurosci; 2007 Aug; 27(35):9491-502. PubMed ID: 17728462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.