These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33707420)

  • 21. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Study of Triboelectric-Potential Gated/Driven Metal-Oxide-Semiconductor Field-Effect Transistor.
    Peng W; Yu R; He Y; Wang ZL
    ACS Nano; 2016 Apr; 10(4):4395-402. PubMed ID: 27077327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultralow Power Wearable Heterosynapse with Photoelectric Synergistic Modulation.
    Wang TY; Meng JL; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Adv Sci (Weinh); 2020 Apr; 7(8):1903480. PubMed ID: 32328430
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of surface physics and chemistry in triboelectric energy harvesting technologies.
    Lee BY; Kim DH; Park J; Park KI; Lee KJ; Jeong CK
    Sci Technol Adv Mater; 2019; 20(1):758-773. PubMed ID: 31447955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Motion recognition by a liquid filled tubular triboelectric nanogenerator.
    Yuan Z; Du X; Niu H; Li N; Shen G; Li C; Wang ZL
    Nanoscale; 2019 Jan; 11(2):495-503. PubMed ID: 30543224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing.
    Pu X; Liu M; Chen X; Sun J; Du C; Zhang Y; Zhai J; Hu W; Wang ZL
    Sci Adv; 2017 May; 3(5):e1700015. PubMed ID: 28580425
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape-Adaptive, Self-Healable Triboelectric Nanogenerator with Enhanced Performances by Soft Solid-Solid Contact Electrification.
    Chen Y; Pu X; Liu M; Kuang S; Zhang P; Hua Q; Cong Z; Guo W; Hu W; Wang ZL
    ACS Nano; 2019 Aug; 13(8):8936-8945. PubMed ID: 31260619
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Recent Progress on Neuromorphic Synapse Electronics: From Emerging Materials, Devices, to Neural Networks.
    Zhao Y; Jiang J
    J Nanosci Nanotechnol; 2018 Dec; 18(12):8003-8015. PubMed ID: 30189917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Personalized keystroke dynamics for self-powered human--machine interfacing.
    Chen J; Zhu G; Yang J; Jing Q; Bai P; Yang W; Qi X; Su Y; Wang ZL
    ACS Nano; 2015 Jan; 9(1):105-16. PubMed ID: 25552331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification.
    Zhu G; Zhou YS; Bai P; Meng XS; Jing Q; Chen J; Wang ZL
    Adv Mater; 2014 Jun; 26(23):3788-96. PubMed ID: 24692147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coplanar Multigate MoS
    Xie D; Jiang J; Hu W; He Y; Yang J; He J; Gao Y; Wan Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):25943-25948. PubMed ID: 30040376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Artificial Tactile Sensing System with Photoelectric Output for High Accuracy Haptic Texture Recognition and Parallel Information Processing.
    Shan L; Zeng H; Liu Y; Zhang X; Li E; Yu R; Hu Y; Guo T; Chen H
    Nano Lett; 2022 Sep; 22(17):7275-7283. PubMed ID: 36000976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A bioinspired analogous nerve towards artificial intelligence.
    Liao X; Song W; Zhang X; Yan C; Li T; Ren H; Liu C; Wang Y; Zheng Y
    Nat Commun; 2020 Jan; 11(1):268. PubMed ID: 31937777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification.
    Zhu G; Yang WQ; Zhang T; Jing Q; Chen J; Zhou YS; Bai P; Wang ZL
    Nano Lett; 2014 Jun; 14(6):3208-13. PubMed ID: 24839864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Versatile Triboiontronic Transistor
    Yang X; Han J; Yu J; Chen Y; Zhang H; Ding M; Jia C; Sun J; Sun Q; Wang ZL
    ACS Nano; 2020 Jul; 14(7):8668-8677. PubMed ID: 32568513
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxide Neuromorphic Transistors Gated by Polyvinyl Alcohol Solid Electrolytes with Ultralow Power Consumption.
    Guo LQ; Han H; Zhu LQ; Guo YB; Yu F; Ren ZY; Xiao H; Ge ZY; Ding JN
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28352-28358. PubMed ID: 31291719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Actively Perceiving and Responsive Soft Robots Enabled by Self-Powered, Highly Extensible, and Highly Sensitive Triboelectric Proximity- and Pressure-Sensing Skins.
    Lai YC; Deng J; Liu R; Hsiao YC; Zhang SL; Peng W; Wu HM; Wang X; Wang ZL
    Adv Mater; 2018 Jul; 30(28):e1801114. PubMed ID: 29869431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificially Intelligent Tactile Ferroelectric Skin.
    Lee K; Jang S; Kim KL; Koo M; Park C; Lee S; Lee J; Wang G; Park C
    Adv Sci (Weinh); 2020 Nov; 7(22):2001662. PubMed ID: 33240753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Artificial Reflex Arc That Perceives Afferent Visual and Tactile Information and Controls Efferent Muscular Actions.
    Sun L; Du Y; Yu H; Wei H; Xu W; Xu W
    Research (Wash D C); 2022; 2022():9851843. PubMed ID: 35252874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.