These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33708030)

  • 1. Bioprinted Injectable Hierarchically Porous Gelatin Methacryloyl Hydrogel Constructs with Shape-Memory Properties.
    Ying G; Jiang N; Parra C; Tang G; Zhang J; Wang H; Chen S; Huang NP; Xie J; Zhang YS
    Adv Funct Mater; 2020 Nov; 30(46):. PubMed ID: 33708030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aqueous Two-Phase Emulsion Bioink-Enabled 3D Bioprinting of Porous Hydrogels.
    Ying GL; Jiang N; Maharjan S; Yin YX; Chai RR; Cao X; Yang JZ; Miri AK; Hassan S; Zhang YS
    Adv Mater; 2018 Dec; 30(50):e1805460. PubMed ID: 30345555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct 3D Bioprinting of Tough and Antifatigue Cell-Laden Constructs Enabled by a Self-Healing Hydrogel Bioink.
    Liu Q; Yang J; Wang Y; Wu T; Liang Y; Deng K; Luan G; Chen Y; Huang Z; Yue K
    Biomacromolecules; 2023 Jun; 24(6):2549-2562. PubMed ID: 37115848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting of a Cell-Laden Conductive Hydrogel Composite.
    Spencer AR; Shirzaei Sani E; Soucy JR; Corbet CC; Primbetova A; Koppes RA; Annabi N
    ACS Appl Mater Interfaces; 2019 Aug; 11(34):30518-30533. PubMed ID: 31373791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically stimulated 3D bioprinting of gelatin-polypyrrole hydrogel with dynamic semi-IPN network induces osteogenesis via collective signaling and immunopolarization.
    Dutta SD; Ganguly K; Randhawa A; Patil TV; Patel DK; Lim KT
    Biomaterials; 2023 Mar; 294():121999. PubMed ID: 36669301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances on Bioprinted Gelatin Methacrylate-Based Hydrogels for Tissue Repair.
    Rajabi N; Rezaei A; Kharaziha M; Bakhsheshi-Rad HR; Luo H; RamaKrishna S; Berto F
    Tissue Eng Part A; 2021 Jun; 27(11-12):679-702. PubMed ID: 33499750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks.
    Cidonio G; Alcala-Orozco CR; Lim KS; Glinka M; Mutreja I; Kim YH; Dawson JI; Woodfield TBF; Oreffo ROC
    Biofabrication; 2019 Jun; 11(3):035027. PubMed ID: 30991370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly Tunable Structural Fidelity.
    Ning L; Mehta R; Cao C; Theus A; Tomov M; Zhu N; Weeks ER; Bauser-Heaton H; Serpooshan V
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44563-44577. PubMed ID: 32966746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of methacrylated gelatin /layered double hydroxides nanocomposite cell-laden hydrogel bioinks with high printability for 3D extrusion bioprinting.
    Alarçin E; İzbudak B; Yüce Erarslan E; Domingo S; Tutar R; Titi K; Kocaaga B; Guner FS; Bal-Öztürk A
    J Biomed Mater Res A; 2023 Feb; 111(2):209-223. PubMed ID: 36213938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects.
    Shen M; Wang L; Gao Y; Feng L; Xu C; Li S; Wang X; Wu Y; Guo Y; Pei G
    Mater Today Bio; 2022 Dec; 16():100382. PubMed ID: 36033373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting.
    Bilici Ç; Tatar AG; Şentürk E; Dikyol C; Koç B
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing.
    Cheng QP; Hsu SH
    Acta Biomater; 2023 Jul; 164():124-138. PubMed ID: 37088162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Porous Gelatin Methacrylate-Based Material for 3D Cell-Laden Constructs.
    Bova L; Maggiotto F; Micheli S; Giomo M; Sgarbossa P; Gagliano O; Falcone D; Cimetta E
    Macromol Biosci; 2023 Feb; 23(2):e2200357. PubMed ID: 36305383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprinted PDLSCs with high-concentration GelMA hydrogels exhibit enhanced osteogenic differentiation in vitro and promote bone regeneration in vivo.
    Zhu Y; Wang W; Chen Q; Ren T; Yang J; Li G; Qi Y; Yuan C; Wang P
    Clin Oral Investig; 2023 Sep; 27(9):5153-5170. PubMed ID: 37428274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels.
    Davoodi E; Montazerian H; Zhianmanesh M; Abbasgholizadeh R; Haghniaz R; Baidya A; Pourmohammadali H; Annabi N; Weiss PS; Toyserkani E; Khademhosseini A
    Adv Healthc Mater; 2022 Apr; 11(7):e2102123. PubMed ID: 34967148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DLP-based bioprinting of void-forming hydrogels for enhanced stem-cell-mediated bone regeneration.
    Tao J; Zhu S; Liao X; Wang Y; Zhou N; Li Z; Wan H; Tang Y; Yang S; Du T; Yang Y; Song J; Liu R
    Mater Today Bio; 2022 Dec; 17():100487. PubMed ID: 36388461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs.
    Raveendran N; Ivanovski S; Vaquette C
    Acta Biomater; 2023 Jan; 156():190-201. PubMed ID: 36155098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.