BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33708397)

  • 1. Competitive cocrystallization and its application in the separation of flavonoids.
    Xia Y; Wei Y; Chen H; Qian S; Zhang J; Gao Y
    IUCrJ; 2021 Mar; 8(Pt 2):195-207. PubMed ID: 33708397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals.
    Ren S; Liu M; Hong C; Li G; Sun J; Wang J; Zhang L; Xie Y
    Acta Pharm Sin B; 2019 Jan; 9(1):59-73. PubMed ID: 30766778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel strategy for pharmaceutical cocrystal generation without knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram.
    Hong C; Xie Y; Yao Y; Li G; Yuan X; Shen H
    Pharm Res; 2015 Jan; 32(1):47-60. PubMed ID: 24939640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Cocrystallization of Dapsone and Caffeine during Fluidized Bed Granulation Processing.
    Todaro V; Worku ZA; Cabral LM; Healy AM
    AAPS PharmSciTech; 2019 Jan; 20(1):28. PubMed ID: 30603811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring Chlorthalidone Aqueous Solubility by Cocrystallization: Stability and Dissolution Behavior of a Novel Chlorthalidone-Caffeine Cocrystal.
    Rodríguez-Ruiz C; Montes-Tolentino P; Domínguez-Chávez JG; Morales-Rojas H; Höpfl H; Herrera-Ruiz D
    Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35214066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Structure, Spectral Investigations, Hydrogen Bonding Interactions and Reactivity-Property Relationship of Caffeine-Citric Acid Cocrystal by Experimental and DFT Approach.
    Verma P; Srivastava A; Srivastava K; Tandon P; Shimpi MR
    Front Chem; 2021; 9():708538. PubMed ID: 34381761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmaceutical Cocrystal: An Antique and Multifaceted Approach.
    Panzade PS; Shendarkar GR
    Curr Drug Deliv; 2017; 14(8):1097-1105. PubMed ID: 27758692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Pharmaceutical Cocrystals: A Focused Review of Flavonoid Cocrystals.
    Xu J; Shi Q; Wang Y; Wang Y; Xin J; Cheng J; Li F
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselectivity of chiral dihydromyricetin in multicomponent solid solutions regulated by subtle structural mutation.
    Sun J; Wang Y; Tang W; Gong J
    IUCrJ; 2023 Mar; 10(Pt 2):164-176. PubMed ID: 36692859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Pharmacokinetic Performance of Quercetin by Cocrystallization.
    Haskins MM; Kavanagh ON; Sanii R; Khorasani S; Chen JM; Zhang ZY; Dai XL; Ren BY; Lu TB; Zaworotko MJ
    Cryst Growth Des; 2023 Aug; 23(8):6059-6066. PubMed ID: 37547881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cocrystallization techniques on compressional properties of caffeine/oxalic acid 2:1 cocrystal.
    Aher S; Dhumal R; Mahadik K; Ketolainen J; Paradkar A
    Pharm Dev Technol; 2013 Feb; 18(1):55-60. PubMed ID: 21981663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Coformer Stoichiometric Ratio on Pharmaceutical Cocrystal Dissolution: Three Cocrystals of Carbamazepine/4-Aminobenzoic Acid.
    Li Z; Matzger AJ
    Mol Pharm; 2016 Mar; 13(3):990-5. PubMed ID: 26837376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Effects of Solvents on Cocrystallization by Computational Simulation Approach.
    Dhibar M; Chakraborty S; Basak S
    Curr Drug Deliv; 2021; 18(1):44-53. PubMed ID: 32753012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism of binding with the α-glucosidase in vitro and the evaluation on hypoglycemic effect in vivo: Cocrystals involving synergism of gallic acid and conformer.
    Xue N; He B; Jia Y; Yang C; Wang J; Li M
    Eur J Pharm Biopharm; 2020 Nov; 156():64-74. PubMed ID: 32890659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Ciprofloxacin-Isonicotinic Acid Cocrystal Using Mechanochemical Synthesis Routes-An Investigation into Critical Process Parameters.
    Karimi-Jafari M; Ziaee A; O'Reilly E; Croker D; Walker G
    Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35336009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cocrystals of quercetin with improved solubility and oral bioavailability.
    Smith AJ; Kavuru P; Wojtas L; Zaworotko MJ; Shytle RD
    Mol Pharm; 2011 Oct; 8(5):1867-76. PubMed ID: 21846121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavone Cocrystals: A Comprehensive Approach Integrating Experimental and Virtual Methods.
    Petrick TL; Grünwald A; Braun DE
    Cryst Growth Des; 2024 May; 24(10):4195-4212. PubMed ID: 38766642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of Cocrystallization Approach in Drug Development: Recent Patents Review.
    Shah K; Parmar VK
    Recent Pat Nanotechnol; 2018; 12(2):143-154. PubMed ID: 29473529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Considerations on high-throughput cocrystals screening by ultrasound assisted cocrystallization and vibrational spectroscopy.
    Rodrigues M; Lopes J; Guedes A; Sarraguça J; Sarraguça M
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117876. PubMed ID: 31818645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cocrystal dissociation in the presence of water: a general approach for identifying stable cocrystal forms.
    Eddleston MD; Madusanka N; Jones W
    J Pharm Sci; 2014 Sep; 103(9):2865-2870. PubMed ID: 24824298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.