These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33708925)

  • 1. Multi-modal magnetic resonance imaging-based grading analysis for gliomas by integrating radiomics and deep features.
    Ning Z; Luo J; Xiao Q; Cai L; Chen Y; Yu X; Wang J; Zhang Y
    Ann Transl Med; 2021 Feb; 9(4):298. PubMed ID: 33708925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors.
    Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK
    Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of the glioma grading using radiomics analysis.
    Cho HH; Lee SH; Kim J; Park H
    PeerJ; 2018; 6():e5982. PubMed ID: 30498643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle.
    Mo H; Liang W; Huang Z; Li X; Xiao X; Liu H; He J; Xu Y; Wu Y
    Eur Radiol; 2023 Jun; 33(6):4259-4269. PubMed ID: 36547672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiomics strategy for glioma grading using texture features from multiparametric MRI.
    Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB
    J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.
    Inano R; Oishi N; Kunieda T; Arakawa Y; Yamao Y; Shibata S; Kikuchi T; Fukuyama H; Miyamoto S
    Neuroimage Clin; 2014; 5():396-407. PubMed ID: 25180159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging.
    Hashido T; Saito S; Ishida T
    J Comput Assist Tomogr; 2021 Jul-Aug 01; 45(4):606-613. PubMed ID: 34270479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Radiomics Model Integrating Luminal and Mesenteric Features to Predict Mucosal Activity and Surgery Risk in Crohn's Disease Patients: A Multicenter Study.
    Ruiqing L; Jing Y; Shunli L; Jia K; Zhibo W; Hongping Z; Keyu R; Xiaoming Z; Zhiming W; Weiming Z; Tianye N; Yun L
    Acad Radiol; 2023 Sep; 30 Suppl 1():S207-S219. PubMed ID: 37149448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive Prediction of Histological Grading in Pediatric Low-Grade Gliomas Using Preoperative T2-FLAIR Radiomics Features.
    Xu J; Lai M; Li S; Cai L; Shi C
    World Neurosurg; 2023 Apr; ():. PubMed ID: 37121504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas.
    Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS
    World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. T
    Hu H; Chen L; Zhang JL; Chen W; Chen HH; Liu H; Shi HB; Wu FY; Xu XQ
    J Magn Reson Imaging; 2022 Sep; 56(3):862-872. PubMed ID: 35092642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI.
    Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C
    Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning.
    Li Y; Wei D; Liu X; Fan X; Wang K; Li S; Zhang Z; Ma K; Qian T; Jiang T; Zheng Y; Wang Y
    Eur Radiol; 2022 Feb; 32(2):747-758. PubMed ID: 34417848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiomics Strategy for Molecular Subtype Stratification of Lower-Grade Glioma: Detecting IDH and TP53 Mutations Based on Multimodal MRI.
    Zhang X; Tian Q; Wang L; Liu Y; Li B; Liang Z; Gao P; Zheng K; Zhao B; Lu H
    J Magn Reson Imaging; 2018 Oct; 48(4):916-926. PubMed ID: 29394005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics-based MRI for predicting Erythropoietin-producing hepatocellular receptor A2 expression and tumor grade in brain diffuse gliomas.
    Liu X; Li J; Liao X; Luo Z; Xu Q; Pan H; Zhou Q; Tao Y; Shi F; Lu G; Zhang Z
    Neuroradiology; 2022 Feb; 64(2):323-331. PubMed ID: 34368897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning-based Radiomics analysis for differentiation degree and lymphatic node metastasis of extrahepatic cholangiocarcinoma.
    Tang Y; Yang CM; Su S; Wang WJ; Fan LP; Shu J
    BMC Cancer; 2021 Nov; 21(1):1268. PubMed ID: 34819043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain.
    Kumar A; Jha AK; Agarwal JP; Yadav M; Badhe S; Sahay A; Epari S; Sahu A; Bhattacharya K; Chatterjee A; Ganeshan B; Rangarajan V; Moyiadi A; Gupta T; Goda JS
    J Pers Med; 2023 May; 13(6):. PubMed ID: 37373909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiomics Nomogram Building From Multiparametric MRI to Predict Grade in Patients With Glioma: A Cohort Study.
    Wang Q; Li Q; Mi R; Ye H; Zhang H; Chen B; Li Y; Huang G; Xia J
    J Magn Reson Imaging; 2019 Mar; 49(3):825-833. PubMed ID: 30260592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study between deep learning and radiomics models in grading liver tumors using hepatobiliary phase contrast-enhanced MR images.
    Du L; Yuan J; Gan M; Li Z; Wang P; Hou Z; Wang C
    BMC Med Imaging; 2022 Dec; 22(1):218. PubMed ID: 36517762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.