These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Raking and regression calibration: Methods to address bias from correlated covariate and time-to-event error. Oh EJ; Shepherd BE; Lumley T; Shaw PA Stat Med; 2021 Feb; 40(3):631-649. PubMed ID: 33140432 [TBL] [Abstract][Full Text] [Related]
3. Three-phase generalized raking and multiple imputation estimators to address error-prone data. Amorim G; Tao R; Lotspeich S; Shaw PA; Lumley T; Patel RC; Shepherd BE Stat Med; 2024 Jan; 43(2):379-394. PubMed ID: 37987515 [TBL] [Abstract][Full Text] [Related]
4. Combining multiple imputation with raking of weights: An efficient and robust approach in the setting of nearly true models. Han K; Shaw PA; Lumley T Stat Med; 2021 Dec; 40(30):6777-6791. PubMed ID: 34585424 [TBL] [Abstract][Full Text] [Related]
6. Optimal sampling for design-based estimators of regression models. Chen T; Lumley T Stat Med; 2022 Apr; 41(8):1482-1497. PubMed ID: 34989429 [TBL] [Abstract][Full Text] [Related]
7. Statistical inference for association studies using electronic health records: handling both selection bias and outcome misclassification. Beesley LJ; Mukherjee B Biometrics; 2022 Mar; 78(1):214-226. PubMed ID: 33179768 [TBL] [Abstract][Full Text] [Related]
8. Using audit information to adjust parameter estimates for data errors in clinical trials. Shepherd BE; Shaw PA; Dodd LE Clin Trials; 2012 Dec; 9(6):721-9. PubMed ID: 22848072 [TBL] [Abstract][Full Text] [Related]
9. Prevalence estimation by joint use of big data and health survey: a demonstration study using electronic health records in New York city. Kim RS; Shankar V BMC Med Res Methodol; 2020 Apr; 20(1):77. PubMed ID: 32252642 [TBL] [Abstract][Full Text] [Related]
10. Considerations for analysis of time-to-event outcomes measured with error: Bias and correction with SIMEX. Oh EJ; Shepherd BE; Lumley T; Shaw PA Stat Med; 2018 Apr; 37(8):1276-1289. PubMed ID: 29193180 [TBL] [Abstract][Full Text] [Related]
11. An approximate quasi-likelihood approach for error-prone failure time outcomes and exposures. Boe LA; Tinker LF; Shaw PA Stat Med; 2021 Oct; 40(23):5006-5024. PubMed ID: 34519082 [TBL] [Abstract][Full Text] [Related]
12. Two-Phase Sampling Designs for Data Validation in Settings with Covariate Measurement Error and Continuous Outcome. Amorim G; Tao R; Lotspeich S; Shaw PA; Lumley T; Shepherd BE J R Stat Soc Ser A Stat Soc; 2021 Oct; 184(4):1368-1389. PubMed ID: 34975235 [TBL] [Abstract][Full Text] [Related]
13. Multiwave validation sampling for error-prone electronic health records. Shepherd BE; Han K; Chen T; Bian A; Pugh S; Duda SN; Lumley T; Heerman WJ; Shaw PA Biometrics; 2023 Sep; 79(3):2649-2663. PubMed ID: 35775996 [TBL] [Abstract][Full Text] [Related]
14. Regression calibration to correct correlated errors in outcome and exposure. Shaw PA; He J; Shepherd BE Stat Med; 2021 Jan; 40(2):271-286. PubMed ID: 33086428 [TBL] [Abstract][Full Text] [Related]
15. Integration of genetic and clinical information to improve imputation of data missing from electronic health records. Li R; Chen Y; Moore JH J Am Med Inform Assoc; 2019 Oct; 26(10):1056-1063. PubMed ID: 31329892 [TBL] [Abstract][Full Text] [Related]
16. Efficient odds ratio estimation under two-phase sampling using error-prone data from a multi-national HIV research cohort. Lotspeich SC; Shepherd BE; Amorim GGC; Shaw PA; Tao R Biometrics; 2022 Dec; 78(4):1674-1685. PubMed ID: 34213008 [TBL] [Abstract][Full Text] [Related]
17. Efficient semiparametric inference for two-phase studies with outcome and covariate measurement errors. Tao R; Lotspeich SC; Amorim G; Shaw PA; Shepherd BE Stat Med; 2021 Feb; 40(3):725-738. PubMed ID: 33145800 [TBL] [Abstract][Full Text] [Related]
18. Errors in multiple variables in human immunodeficiency virus (HIV) cohort and electronic health record data: statistical challenges and opportunities. Shepherd BE; Shaw PA Stat Commun Infect Dis; 2020 Sep; 12(Suppl1):20190015. PubMed ID: 35880997 [No Abstract] [Full Text] [Related]
19. Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification. Beesley LJ; Mukherjee B Stat Med; 2022 Dec; 41(28):5501-5516. PubMed ID: 36131394 [TBL] [Abstract][Full Text] [Related]
20. ACCOUNTING FOR DEPENDENT ERRORS IN PREDICTORS AND TIME-TO-EVENT OUTCOMES USING ELECTRONIC HEALTH RECORDS, VALIDATION SAMPLES, AND MULTIPLE IMPUTATION. Giganti MJ; Shaw PA; Chen G; Bebawy SS; Turner MM; Sterling TR; Shepherd BE Ann Appl Stat; 2020 Jun; 14(2):1045-1061. PubMed ID: 32999698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]