These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 33709524)
41. Cabbage stem flea beetle's (Psylliodes chrysocephala L.) susceptibility to pyrethroids and tolerance to thiacloprid in the Czech Republic. Stará J; Kocourek F PLoS One; 2019; 14(9):e0214702. PubMed ID: 31539393 [TBL] [Abstract][Full Text] [Related]
42. Unlike woodland edges, flower strips do not act as a refuge for cabbage stem flea beetle aestivation. Pigot J; Gardarin A; Doré T; Morisseau A; Valantin-Morison M Pest Manag Sci; 2024 May; 80(5):2325-2332. PubMed ID: 37198746 [TBL] [Abstract][Full Text] [Related]
43. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis). Peters B; Gao Z; Zumkier U Ecotoxicology; 2016 Nov; 25(9):1679-1690. PubMed ID: 27709397 [TBL] [Abstract][Full Text] [Related]
44. Landscape Scale Study of the Net Effect of Proximity to a Neonicotinoid-Treated Crop on Bee Colony Health. Balfour NJ; Al Toufailia H; Scandian L; Blanchard HE; Jesse MP; Carreck NL; Ratnieks FLW Environ Sci Technol; 2017 Sep; 51(18):10825-10833. PubMed ID: 28834436 [TBL] [Abstract][Full Text] [Related]
45. Coordinate changes in gene expression and triacylglycerol composition in the developing seeds of oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Vuorinen AL; Kalpio M; Linderborg KM; Kortesniemi M; Lehto K; Niemi J; Yang B; Kallio HP Food Chem; 2014 Feb; 145():664-73. PubMed ID: 24128529 [TBL] [Abstract][Full Text] [Related]
46. EFFICACY DATA OF CYANTRANILIPROLE CONTAINING INSECTICIDE PREPARATION ON CABBAGE ROOT FLY (DELIA RADICUM LINNAEUS) IN WINTER OILSEED RAPE. Farkas I; Molnár I; Somlyay I; Tóth E Commun Agric Appl Biol Sci; 2015; 80(2):149-52. PubMed ID: 27145579 [TBL] [Abstract][Full Text] [Related]
47. Uptake of Neonicotinoid Insecticides by Water-Foraging Honey Bees (Hymenoptera: Apidae) Through Guttation Fluid of Winter Oilseed Rape. Reetz JE; Schulz W; Seitz W; Spiteller M; Zühlke S; Armbruster W; Wallner K J Econ Entomol; 2016 Feb; 109(1):31-40. PubMed ID: 26516090 [TBL] [Abstract][Full Text] [Related]
48. Parasitoids of the cabbage seed weevil deliver high and consistent parasitism in variable landscapes: A showcase of conservation biocontrol. Langer V; Jensen SM Pest Manag Sci; 2024 May; 80(5):2362-2370. PubMed ID: 37483162 [TBL] [Abstract][Full Text] [Related]
49. Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland. Schulze J; Frauenknecht T; Brodmann P; Bagutti C PLoS One; 2014; 9(12):e114477. PubMed ID: 25464509 [TBL] [Abstract][Full Text] [Related]
50. Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Devos Y; Hails RS; Messéan A; Perry JN; Squire GR Transgenic Res; 2012 Feb; 21(1):1-21. PubMed ID: 21526422 [TBL] [Abstract][Full Text] [Related]
51. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Rolke D; Persigehl M; Peters B; Sterk G; Blenau W Ecotoxicology; 2016 Nov; 25(9):1691-1701. PubMed ID: 27650369 [TBL] [Abstract][Full Text] [Related]
52. Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Devos Y; Reheul D; de Schrijver A; Cors F; Moens W Environ Biosafety Res; 2004; 3(3):135-48. PubMed ID: 15901096 [TBL] [Abstract][Full Text] [Related]
53. Insecticide resistance in pollen beetles over 7 years - a landscape approach. Riggi LG; Gagic V; Bommarco R; Ekbom B Pest Manag Sci; 2016 Apr; 72(4):780-6. PubMed ID: 26033304 [TBL] [Abstract][Full Text] [Related]
54. Wild pollinators enhance oilseed rape yield in small-holder farming systems in China. Zou Y; Xiao H; Bianchi FJ; Jauker F; Luo S; van der Werf W BMC Ecol; 2017 Feb; 17(1):6. PubMed ID: 28222708 [TBL] [Abstract][Full Text] [Related]
55. Biophoton emission-based approach of the effects of systemic insecticides on the survival of Gerbovits B; Keszthelyi S; Jócsák I J Environ Sci Health B; 2024; 59(7):417-424. PubMed ID: 38804855 [TBL] [Abstract][Full Text] [Related]
57. Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside. Nishizawa T; Nakajima N; Tamaoki M; Aono M; Kubo A; Saji H GM Crops Food; 2016 Jan; 7(1):20-37. PubMed ID: 26838503 [TBL] [Abstract][Full Text] [Related]
58. Heterogeneity in the distribution of genetically modified and conventional oilseed rape within fields and seed lots. Begg GS; Elliott MJ; Cullen DW; Iannetta PP; Squire GR Transgenic Res; 2008 Oct; 17(5):805-16. PubMed ID: 18293095 [TBL] [Abstract][Full Text] [Related]
59. Napins, 2S albumins, are major allergens in oilseed rape and turnip rape. Puumalainen TJ; Poikonen S; Kotovuori A; Vaali K; Kalkkinen N; Reunala T; Turjanmaa K; Palosuo T J Allergy Clin Immunol; 2006 Feb; 117(2):426-32. PubMed ID: 16461144 [TBL] [Abstract][Full Text] [Related]