These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33709573)

  • 21. Noble-Metal Nanocrystals with Controlled Shapes for Catalytic and Electrocatalytic Applications.
    Shi Y; Lyu Z; Zhao M; Chen R; Nguyen QN; Xia Y
    Chem Rev; 2021 Jan; 121(2):649-735. PubMed ID: 32667792
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrocatalytic oxidation of small organic molecules in acid medium: enhancement of activity of noble metal nanoparticles and their alloys by supporting or modifying them with metal oxides.
    Kulesza PJ; Pieta IS; Rutkowska IA; Wadas A; Marks D; Klak K; Stobinski L; Cox JA
    Electrochim Acta; 2013 Nov; 110():474-483. PubMed ID: 24443590
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Single-parameter-tuned synthesis for shape-controlled gold nanocrystals stimulated by iron carbonyl.
    Sun H; Xu W; Chen J; Zhang H; Yu J; Zong C; Yang J; Zhong Z; Tang Y
    J Colloid Interface Sci; 2021 Nov; 601():773-781. PubMed ID: 34102406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlled growth of uniform noble metal nanocrystals: aqueous-based synthesis and some applications in biomedicine.
    Tran TH; Nguyen TD
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):1-22. PubMed ID: 21802262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal nanocrystals with highly branched morphologies.
    Lim B; Xia Y
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):76-85. PubMed ID: 21089081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical Transformations of Noble-Metal Nanocrystals upon Thermal Activation.
    Lyu Z; Chen R; Mavrikakis M; Xia Y
    Acc Chem Res; 2021 Jan; 54(1):1-10. PubMed ID: 33275422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications.
    Liu J; Ma Q; Huang Z; Liu G; Zhang H
    Adv Mater; 2019 Mar; 31(9):e1800696. PubMed ID: 30256461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonmetal-doping of noble metal-based catalysts for electrocatalysis.
    Li Z; Lu X; Teng J; Zhou Y; Zhuang W
    Nanoscale; 2021 Jul; 13(26):11314-11324. PubMed ID: 34184008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advances in phosphorus containing noble metal electrocatalysts for direct liquid fuel cells.
    Zhang J; Wu L; Xu L; Sun D; Sun H; Tang Y
    Nanoscale; 2021 Oct; 13(38):16052-16069. PubMed ID: 34549765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrite-Type Nanomaterials for Advanced Electrocatalysis.
    Gao MR; Zheng YR; Jiang J; Yu SH
    Acc Chem Res; 2017 Sep; 50(9):2194-2204. PubMed ID: 28825788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shape-Controlled Photochemical Synthesis of Noble Metal Nanocrystals Based on Reduced Graphene Oxide.
    Liu Y; Naseri A; Li T; Ostovan A; Asadian E; Jia R; Shi L; Huang L; Moshfegh AZ
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16527-16537. PubMed ID: 35373562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Advances in Shape-Controlled Synthesis of Noble Metal Nanoparticles by Radiolysis Route.
    Abedini A; Bakar AA; Larki F; Menon PS; Islam MS; Shaari S
    Nanoscale Res Lett; 2016 Dec; 11(1):287. PubMed ID: 27283051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes.
    Chen Q; Jia Y; Xie S; Xie Z
    Chem Soc Rev; 2016 Jun; 45(11):3207-20. PubMed ID: 27086861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimension Engineering in Noble-Metal-Based Electrocatalysts for Water Splitting.
    Yang X; Ouyang Y; Guo R; Yao Z
    Chem Rec; 2023 Feb; 23(2):e202200212. PubMed ID: 36193972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of Metal Nanocrystals with Twin Defects in Electrocatalysis.
    Li M; Yuan Y; Yao Z; Gao L; Zhang J; Huang H
    Chem Asian J; 2020 Oct; 15(20):3254-3265. PubMed ID: 32865876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control.
    Niu W; Zhang L; Xu G
    Nanoscale; 2013 Apr; 5(8):3172-81. PubMed ID: 23467455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles.
    Zhu J; Hu L; Zhao P; Lee LYS; Wong KY
    Chem Rev; 2020 Jan; 120(2):851-918. PubMed ID: 31657904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump.
    Zhang H; Li W; Jin M; Zeng J; Yu T; Yang D; Xia Y
    Nano Lett; 2011 Feb; 11(2):898-903. PubMed ID: 21192673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantification, Exchange, and Removal of Surface Ligands on Noble-Metal Nanocrystals.
    Kwan Li K; Wu CY; Yang TH; Qin D; Xia Y
    Acc Chem Res; 2023 Jun; 56(12):1517-1527. PubMed ID: 37162754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.